首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L−1, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L−1, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L−1, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.  相似文献   

2.
The behaviour of heavy metals was studied by carrying out a series of experiments with an activated sludge biological reactor (with pure oxygen), fed with different types of landfill leachate. The leachates used had been previously treated by the wet oxidation process and also by ammonia stripping. The experimentation aims were to evaluate both BOD and COD removal rates and the distribution of heavy metals concentrations between the liquid and solid phases. This latter data was used to confirm a mathematical model which predicts the distribution of heavy metals between the liquid and solid phases of a biological process.  相似文献   

3.
The degradation rate of dioxins added to the activated sludge from a leachate treatment plant of a landfill under denitrification conditions was estimated using six bioreactors. Over 99% of the added dioxins (600ng) were degraded within 7 days. Furthermore, continuous cultivation was carried out for 1 month. The activated sludge degraded 600ng of dioxins (that is, all of the added dioxins) placed in each reactor every 7 days, and this activity was maintained for 35 days. Under aerobic conditions with this sludge, the dioxins were not degraded in 7 days, but 90% of the 600ng of dioxins was degraded in 35 days. The high level of activity observed in the present study may only occur under anaerobic conditions, especially under denitrifying conditions.  相似文献   

4.
The landfill leachate in Hong Kong usually contains quite high NH4+–N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH4+–N) is by an air-stripping process. However, there are some operational problems such as carbonate scaling in the process of stripping. For this reason, some technical alternatives for NH4+–N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH4+–N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl2·6H2O+Na2HPO4·12H2O, MgO+85% H3PO4, and Ca(H2PO4)2·H2O+MgSO4·7H2O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively. The results indicated that NH4+–N contained in the leachate could be quickly reduced from 5618 to 112 mg/l within 15 min, when MgCl2·6H2O and Na2HPO4·12H2O were applied with a Mg2+:NH4+:PO43− mol ratio of 1:1:1. The pH range of the minimum MAP solubility was discovered to be between 8.5 and 9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2·6H2O and Na2HPO4·12H2O, which may affect microbial activity in the following biological treatment processes. The other two combinations of chemicals [MgO+85% H3PO4 and Ca(H2PO4)2·H2O+MgSO4·7H2O] could minimise salinity after precipitation, but they were less efficient for NH4+–N removal, compared with MgCl2·6H2O and Na2HPO4·12H2O. COD had no significant reduction during this precipitation. It was found that the sludge of MAP generated was easily settled within 10 min to reach its solids content up to 27%. The other characteristics including capillary suction time (CST) and dry density (DD) of the MAP sludge were also tested. The experimental results indicate that the settled sludge is quite solid and can be directly dumped at a landfill site even without any further dewatering treatment.  相似文献   

5.
The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.  相似文献   

6.
The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552–62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8–99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2–4.8% in the 1st digester and 1.8–7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49–60% and 48.6–64.7%, respectively. Methane production rate was in the range of 0.02–0.04, 0.04–0.07, and 0.02–0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.  相似文献   

7.
The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400mg O(2)dm(-3), in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1cm(3)dm(-3) of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented approximately 16% of the volume of the treated sludge.  相似文献   

8.
The removal of nitrogen and organics from municipal landfill leachate in sequencing batch reactors (SBR) was investigated in the present study. The influence of hydraulic retention time (HRT), sludge age, manner of leachate dosage (short filling period of SBR and filling during the reaction period), and operational conditions with and without a mixing phase in the SBR cycle was explored. Four series were performed. In each series, the HRT used in the four SBRs was 12, 6, 3 and 2 days, respectively. Series 1 and 2 were characterized by a short leachate filling period, whereas series 3 and 4 were characterized by filling during the 4 h duration of the reaction in the SBR cycle. In series 1-3 SBR reactors worked with mixing and aeration phases, whereas in series 4 they worked only with an aeration phase. The effectiveness of the removal of organics increased with the extension of the HRT of leachate, particularly under operational conditions with the mixing and aeration phases in the SBR cycle. At 12 days HRT, the SBRs with the mixing and aeration phases in the cycle (series 1-3) showed better results than those with only an aeration phase (series 4). However, at 2 days HRT the operational conditions in SBR reactors with leachate filling over the reaction period (series 3 and 4) were more suitable. The highest efficiency of ammonium removal was obtained in series 1 with a short leachate filling period. In this series, at an HRT of 3-12 days, the ammonium concentration in the effluent did not exceed 1 mg NNH4 L(-1). Nitrogen removal proceeded mainly in the aeration phase as a result of ammonium losses and, to a lesser extent, dissimilative nitrate reduction over the mixing phase. The highest percentage of nitrogen removal as a result of ammonium losses was observed in series with a short filling period and long sludge age (series 1) and also in series without a mixing phase and filling over the aeration phase (series 4), whereas the highest nitrogen consumption for biomass production occurred in series 3 with filling during the reaction period and mixing phase of the cycle.  相似文献   

9.
In situ ammonia removal in bioreactor landfill leachate   总被引:11,自引:0,他引:11  
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH(3)-N in the leachate. Because NH(3)-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117 mgN/day-g dry waste and half-saturation constants of 59.6 and 147 mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH(3)-N from recirculated landfill leachate.  相似文献   

10.
Journal of Material Cycles and Waste Management - In this study, the effect of natural zeolite on the ammonium ion removal from landfill fresh leachate (LFL) was investigated. The effect of...  相似文献   

11.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

12.
In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded.We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.  相似文献   

13.
Limestone has been proven effective in removing metals from water and wastewater. A literature review indicated that limestone is capable of removing heavy metals such as Cu, Zn, Cd, Pb, Ni, Cr, Fe and Mn are through a batch process or by filtration technique. The removal capability is reported at up to 90%. However, to date most of the studies have been focused on synthetic wastewater. The present study attempts to investigate the suitability of limestone to attenuate total iron (Fe) from semi aerobic leachate at Pulau Burung Landfill Site in Penang, Malaysia. Iron was found in significant quantities at the landfill site. The study also aims to establish the Fe isotherm and breakthrough time of the proposed limestone filter for post-treatment to the migrating landfill leachate before its release to the environment. The Fe isotherms were established using a batch equilibrium test, while the breakthrough characteristics were determined using continuous flow permeating through a limestone column. The latter was used in order to simulate the continuous flow of leachate that would occur in the proposed limestone filter. The limestone media used in the experiment contain more than 90% CaCO3 with particle sizes ranging from 2 to 4 mm. Four filter columns (each 150 mm in diameter and 1000 mm depth) were installed at the landfill site. Metal loadings were kept below 0.5 kg /m3 day and the experiment was run continuously for 30 days. Initial results indicated that 90% of Fe can be removed from the leachate based on retention time of 57.8 min and surface loading of 12.2 m3/m2 day. For the batch study on the Fe isotherm, the results indicated that limestone is potentially useful as an alternative leachate treatment system at a relatively low cost.  相似文献   

14.
Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l?1 d?1 and 3.84 g COD l?1 d?1, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t?1 TS d?1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t?1 TS d?1 and the inhibition was enhanced with the increase of TON loading.  相似文献   

15.
A three-compartment system, comprising a landfill column with fresh municipal solid waste, a column with a well-decomposed refuse layer as methane producer, and a sequential batch reactor as ex situ nitrifying reactor, was employed to remove nitrogen from municipal solid waste leachate. Since food waste comprised a major portion of refuse collected in Shanghai, an intense hydrolysis reaction occurred and caused the rapid accumulation of ammonia nitrogen (NH(3)-N) and total organic carbon in the leachate. This paper discusses the role of the three mentioned units and the design and operation of the proposed system. With most NH(3)-N being converted to nitrite nitrogen (NO(2)(-)-N) or nitrate nitrogen (NO(3)(-)-N) by the nitrifying reactor, and with the well-decomposed refuse layer transforming most dissolved organic compounds to CO(2), carbonates and methane, it was found that the fresh refuse column could efficiently denitrify the hydrolyzed nitrogen to N(2) gas. The role of the three mentioned units and comments on the design and operation of the proposed system are also discussed.  相似文献   

16.
Journal of Material Cycles and Waste Management - Landfill leachates contain a variety of contaminants including phosphorus, whose entry into the surface waters should be restricted given the...  相似文献   

17.
The feasibility of simultaneous nitrification and denitrification in a bioreactor landfill with limited aeration was assessed. Three column reactors, simulating bioreactor landfill operations under anaerobic condition (as reference), intermittent forced aeration and enhanced natural aeration were hence established, where aerated columns passed through two phases, i.e., fresh landfill and well-decomposed landfill. The experimental results show that limited aeration decreased nitrogen loadings of leachate distinctly in the fresh landfill. In the well-decomposed landfill, the NH(4)(+)-N of the input leachate could be nitrified completely in the aerated landfill columns. The nitrifying loadings of the column cross section reached 7.9 g N/m(2)d and 16.9 g N/m(2)d in the simulated landfill columns of intermittent forced aeration and enhanced natural aeration, respectively. The denitrification was influenced by oxygen distribution in the landfill column. Intermittent existence of oxygen in the landfill with the intermittent forced aeration was favorable to denitrify the NO(2)(-)-N and NO(3)(-)-N, indicated by the high denitrification efficiency (>99%) under the condition of BOD(5)/TN of more than 5.4 in leachate; locally persistent existence of oxygen in the landfill with enhanced natural aeration could limit the denitrification, indicated by relatively low denitrification efficiency of about 75% even when the BOD(5)/TN in leachate had an average of 7.1.  相似文献   

18.
Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 104 MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.  相似文献   

19.
This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s?1 within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L?1 at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L?1, 22.8 mg L?1, 24.2 mg L?1, 18.4 mg L?1 and 50.8 mg L?1 respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.  相似文献   

20.
The performance of a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic arrangement was investigated to treat landfill leachate for simultaneous removal of COD and ammonium. It was found that the anaerobic MBBR played a major role in COD removal due to methanogenesis, and the aerobic MBBR acted as COD-polishing and ammonium removal step. The contribution of the anaerobic MBBR to total COD removal efficiency reached 91% at an organic loading rate (OLR) of 4.08 kgCOD/(m3d), and gradually decreased to 86% when feed OLR was increased to 15.70 kgCOD/(m3d). Because of the complementary function of the aerobic reactor, the total COD removal efficiency of the system had a slight decrease from 94% to 92% even though the feed OLR was increased from 4.08 to 15.70 kgCOD/(m3d). Hydraulic retention time (HRT) had a significant effect on NH+4-N removal; more than 97% of the total NH+4-N removal efficiency could be achieved when the HRT of the aerobic MBBR was more than 1.25 days. The anaerobic-aerobic system had a strong tolerance to shock loading. A decrease in COD removal efficiency of only 7% was observed when the OLR was increased by four times and shock duration was 24 h, and the system could recover the original removal efficiency in 3 days. The average sludge yield of the anaerobic reactor was estimated to be 0.0538 gVSS/gCOD rem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号