首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For marine invertebrates, larval developmental mode is inseparably linked to the nutritional content of the egg. Within the asterinid family of sea stars there have been multiple, independent, evolutionary transitions to lecithotrophic development from the ancestral, planktotrophic state. To investigate the evolution of maternal investment and development within the Asterinidae, we quantified individual lipid classes and total protein for eggs and larval stages of closely related species representing three developmental modes (planktotrophy, planktonic lecithotrophy and benthic lecithotrophy). Within species, maternal provisioning differed between females indicating that egg quality varied with parentage. Maternal investment was related to egg size but, after correcting for egg volume, we identified two major oogenic modifications associated with the evolution of lecithotrophic development: (1) a reduction in protein deposition that probably reflects the reduced structural requirements of nonfeeding larvae, (2) an increase in deposition of a single class of energetic lipid, triglyceride (TG). The exception was Parvulastra exigua, which has benthic, lecithotrophic development and lays eggs with a lipid to protein ratio close to that of planktotrophs. This oogenic strategy may provide P. exigua larvae with a protein “weight-belt” that assists in maintaining a benthic existence. Asterinids with planktotrophic development used a significant portion of egg TG to build a feeding bipinnaria larva. For Meridiastra mortenseni, female-specific differences in egg TG were still evident at the bipinnaria stage indicating that egg quality has flow-on effects for larval fitness. In lecithotrophic asterinids, TG reserves were not depleted in development to the larval stage whereas protein stores may help fuel early larval development. Available data indicate that there may be two evolutionarily stable egg lipid profiles for free-spawning, temperate echinoderms.  相似文献   

2.
Many species of marine invertebrate larvae settle and metamorphose in response to chemicals produced by organisms associated with the adult habitat, and histamine is a cue for larvae of the sea urchin Holopneustes purpurascens. This study investigated the effect of histamine on larval metamorphosis of six sea urchin species. Histamine induced metamorphosis in larvae of three lecithotrophic species (H. purpurascens, Holopneustes inflatus and Heliocidaris erythrogramma) and in one planktotrophic species (Centrostephanus rodgersii). Direct comparisons of metamorphic rates of lecithotrophic and planktotrophic larvae in assays cannot be made due to different proportions of larvae being competent. Histamine (10 μM) induced metamorphosis in 95% of larvae of H. purpurascens and H. inflatus after 1 h, while the coralline alga Amphiroa anceps induced metamorphosis in 40–50% of these larvae. Histamine (10 μM) and A. anceps induced 40 and 80% metamorphosis, respectively, in the larvae of H. erythrogramma after 24 h. Histamine (10 μM) and the coralline alga Corallina sp. induced 30 and 70% metamorphosis, respectively, in the larvae of C. rodgersii after 24 h. No metamorphosis of any larval species occurred in seawater controls. Larvae of two planktotrophic species (Tripneustes gratilla and Heliocidaris tuberculata) did not metamorphose in response to histamine. Seagrasses, the host plants of H. inflatus, induced rapid metamorphosis in larvae of the two Holopneustes species, and several algae induced metamorphosis in C. rodgersii larvae. Histamine leaching from algae and seagrasses may act as a habitat marker and metamorphic cue for larvae of several ecologically important sea urchin species.  相似文献   

3.
The pelagic yellowtail kingfish Seriola lalandi has become a target species for aquaculture in Asia and Australasia. Australasian production is reliant on larviculture from eggs of captive brood stock; however, knowledge regarding the nutritional requirements of larvae of this species is still scarce, particularly in relation to lipids. As a first step in establishing these requirements, eggs and larvae from captive S. lalandi brood stock were examined for differences in total protein, total lipid and lipid classes between individual spawning events, over the spawning season, and during larval development from fertilisation to 15 days post hatch. Results indicate that total protein egg−1 varied significantly between individual spawning events within a season, but neither total lipid nor total protein egg−1 varied significantly across the spawning season. Brood stock egg lipids were made up of approximately 60% phospholipid, 25% wax and/or sterol esters (WE), 15% triacylglycerol (TAG), and small amounts of sterols and free fatty acids. During the early larval period, both WE and TAG were utilised concurrently for energy. The larvae experienced very high mortality around 5–7 days post hatch, which coincided with very low levels of all neutral lipid classes. Although many other factors may also influence larval mortality, these results indicate that lipid provisioning may be an important factor in larval survival during the critical period around first-feeding in this species. Examination of ratios of TAG:ST, often used as a condition index in fish larvae, suggested that some of the larvae were suffering from starvation. However, as egg-derived WE appears to provide a significant source of energy during the early larval period in S. lalandi, it is suggested that WE should be included in any index of larval nutritional state.  相似文献   

4.
We studied the lipid dynamics (lipid contents, classes and fatty acids) during oogenesis and early embryogenesis of 7 viviparous and 3 oviparous deepwater chondrichthyans. Mature pre-ovulated ovarian follicles of all species were high in lipid content, indicative of large energetic expenditure and high maternal investment. Larger lipid reserves were found in viviparous dogshark (28–36% wet weight, ww) compared to oviparous chimaeras (19–24% ww) and catshark, F. boardmani (18% ww). Neutral lipids and monounsaturated fatty acids were the main source of lipidic energy during vitellogenesis and gestation. For most species, there was a peak in total lipid content, levels of storage lipids and essential fatty acids at time of ovulation. Interspecific variation of total lipid yolk reserves and lipid class profiles was largely explained by differences in parity mode, reproductive (continuous vs. non-continuous oocytes development) strategy and depth-related physiological adaptations. Fatty acid profiles were less variable among species with the most important fatty acids including: 16:0, 18:1ω9, 20:1ω9, 20:4ω6 and 22:6ω3. These findings provide a greater biochemical understanding of different maternal-embryonic relationships among chondrichthyans, which can be used as a baseline for subsequent comparative studies.  相似文献   

5.
The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4°C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2–3-fold lipid increase (~6–9 μg individual−1) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation.  相似文献   

6.
Metamorphosis in the Chilean oyster Ostrea chilensis was complete 36 h after release of the larvae, when 100% of the individuals showed edge growth of the dissoconch. The size of the larval shell did not change during metamorphosis, although the total dry weight of the larva decreased considerably. During this period, when the gill ciliature was undeveloped and the oyster therefore unable to feed, energy demands were met by biochemical reserves retained from the larval phase. Proteins contributed the largest quantity of energy to the metamorphosing oyster, 69.3% of the total expended, whereas lipids supplied 24.3% and carbohydrates only 6.4%. The process of metamorphosis consumed 64.5% of the energy reserves held by the pediveliger at the time of release. When metamorphosis was complete, growth began and tissue reserves were replenished, protein and carbohydrate accumulating rapidly early in the juvenile stage. Received: 26 December 1997 / Accepted: 8 July 1998  相似文献   

7.
K. Anger 《Marine Biology》1996,126(2):283-296
Larvae of the northern stone crab, Lithodes maja L., were reared in the laboratory from hatching to the second crab stage. complete larval development (at constant 9°C) lasted about 7 wk, invariably consisting of three pelagic zoeal stages and a semibenthic Megalopa; only two zoeal stages have been described in the literature. All larval stages are lecithotrophic. First feeding was consistently observed only after metamorphosis, in the first juvenile crab stage. In short intervals (every 1 to 5 d), developmental changes in biomass, B (expressed as: dry weight, W; carbon, C; nitrogen, N; hydrogen, H) and oxygen consumption (respiration, R) were measured in larvae and early juveniles; additionally, protein and carbohydrates were measured, but only in the zoeal stages and early Megalopa. Unusually high C contents (varying between 56 and 61% of W in eggs and freshly hatched Zoea I larvae from 12 different females) and high C:N weight ratios (8 to 11) indicate enhanced initial lipid stores, which are utilized as the major metabolic substrate during both embryonic and lecithotrophic larval development. Predominant degradation of lipids is shown indirectly; the C:N ratio decreased significantly, from 10 (at hatching) to 6 (at metamorphosis), while larval protein decreased only little, from ca. 55% of W (at hatching) to 48% (in the Megalopa). From hatching to metamorphosis, about 27% of the initially present W, 48% of C, 18% of N, and 52% of H were lost. This decrease in larval biomass can be described as an exponential function of development time. The major part of these losses were associated with metabolic energy requirements, while exuvial losses were comparably small. In each of the zoeal stages, only about 1 to 2% of late premoult (LPM) B was shed with the exuvia. The Megalopa, which produces a much thicker, calcified exoskeleton, lost 20% of LPM W, but only 5 to 8% of organic constituents (C, N, H). Much higher exuvial losses were measured in the Crab I stage (51% in W, 21% in C, 5% in N, and 7% in H). Maximum respiration was found in the actively swimming zoeal stages, a minimum in the predominantly benthic, mostly inactive Megalopa. The Crab I stage exhibits also a sluggish behaviour and low R, in spite of beginning food uptake and growth. Immediately after metamorphosis, the juvenile crab gained rapidly in W, in particular in its C fraction. A transitorily steep increase in the C:N ratio indicates a replenishment of partially depleted lipid stores, but also a rapid initial increase of inorganic C in the heavily calcified exoskeleton. Instantaneous rates of growth, assimilation, and net growth efficiency (K 2) were high during the initial (postmoult) phase in the first juvenile crab stage (C-specific growth rate: 6% d-1; K 2:70%), but decreased towards zero values during laterstages of the moulting cycle; metabolism remained practically constant during the Crab I stage. Entirely lecithotrophic larval development from hatching to metamorphosis in L. maja is considered an adaptation to seasonally short and limited planktonic food production in subarctic regions of the northern Atlantic.  相似文献   

8.
Many free-living copepods produce and store lipids prior to entering diapause (long-term dormancy). Heteropsyllus nunni Coull is the only marine harpacticoid copepod known to undergo any form of diapause. This study presents the first information on the types of lipids and fatty acids produced for long-term diapause in this benthic species. Sexually immature adults of H. nunni undergo diapause within a pliable self-made cyst. Prior to entering diapause (which lasts 3–4 months), they produce and store large amounts of orange lipid. The lipids apparently are utilized during diapause. Although some residual lipids remain, chiefly around the gonads, after the copepods emerge from their cysts, the lipid stores are visibly reduced. Typically, the copepods mate and produce eggs within 48 h after diapause is terminated. Light level and confocal laser scanning microscopy revealed that the lipid stores are distributed throughout the body in numerous oil droplets and not as a single oil sac, as seen in many marine calanoid copepods prior to overwintering (winter diapause). Transmission electron microscopy showed lipid spheres within the gut epithelium and large droplets of lipids stored extracellularly. Confocal laser scanning microscopy of copepods in pre-diapause, during diapause (encysted), post-diapause (recently excysted), and in reproductive condition, revealed that lipid stores are reduced following diapause, but are not totally absent. Analysis of lipid classes showed that H. nunni store predominantly wax esters/sterol esters (83% of total lipids) during diapause. The predominant lipid is most likely wax esters, as sterol esters typically are found only in small amounts in copepods. Fatty acid (FA) profiles of the copepods in diapause showed 16:0 to be most abundant followed by 16:1n-7 and 18:0; other FA occurred at concentrations <10% of total FA. Three polyunsaturated fatty acids (PUFA), 20:5n-3, 18:2n-6 and 20:4n-6, were found at concentrations <2% of total FA. These PUFA are "essential fatty acids" in H. nunni, obtained through dietary sources. The lipid classes and fatty acids present in H. nunni during diapause are compared to those of other copepods, some in a state of diapause and others not. It appears that lipid class and FA profiles are indicative of genetic makeup, type of diet or amount of food consumed prior to dormancy. Some classic paradigms of lipids and their association with copepod diapause are re-evaluated.Communicated by P.W. Sammarco, Chauvin  相似文献   

9.
Aquaculture studies have revealed that polyunsaturated fatty acids are critical for maintaining substantial growth, survival and reproductive rates, and high food conversion efficiencies for a wide variety of marine and freshwater organisms. The aim of this study was to investigate the gross biochemical and fatty acid composition of both neutral and polar lipid compartments of the razor clam Solen marginatus throughout embryonic and larval development. High levels of stored reserves in S. marginatus eggs allow a short larval development, lasting only 8 days. The energy required for embryogenesis was obtained from stored proteins. During larval development from D-shaped veliger until settlement, protein, lipid, and carbohydrate reserves were indistinctly stored for metamorphosis. Although total lipids increased, fatty acids in both neutral and polar lipids decreased during embryonic development. The depots allow a short larval development in which settlement is reached with lower amounts of stored neutral and polar lipids than the contents found in the oocytes. Non-methylene-interrupted dienoic fatty acid levels were similar to those of some polyunsaturated fatty acids, with increasing percentages at the onset of metamorphosis. This study indicates that S. marginatus exhibits a different pattern in the use of gross biochemical and fatty acid reserves during larval development compared to other razor clam and bivalve species, mainly due to the large size of its eggs and the short larval development stage reported in this species.  相似文献   

10.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

11.
Rates of oxygen consumption were measured for embryos, larvae and juveniles of the seastar Mediaster aequalis for 76 days post-fertilization. The rate increased from 0.65 nmol O2 ind–1 h–1 at 6 h after fertilization to 2.8 nmol O2 ind–1 h–1 at day 35. Larvae became competent to metamorphose around day 35 post-fertilization and began to decrease their metabolic rate after this time. Metamorphosed juveniles consumed 0.74 nmol O2 ind–1 h–1. Eggs contained 138.6 µg lipid ind–1 and 12.1 µg protein ind–1. Lipid levels decreased in concentration throughout development while protein levels increased slightly. The lipid levels decreased by 88.5 µg from eggs to day 76 larvae, accounting for 3.5 J of energy. Total oxygen consumption to this point was 3.74 µmol O2 ind–1, accounting for 1.84 J. The energetic demand up to day 76 was met completely through the use of lipid reserves. Metamorphosed juveniles expended 0.5 J more than larvae at the same age. Tubes of the polychaete Phyllochaetopterus prolifica were able to induce metamorphosis in M. aequalis larvae and a non-polar extract of these tubes also triggered metamorphosis. Larvae that are delayed to metamorphose can sustain their metabolic rate with lipid reserves for a limited, yet undetermined, period.Communicated by P.W. Sammarco, Chauvin  相似文献   

12.
Cape hakes, Merluccius paradoxus and M. capensis, are important gadoid fish that are commercially harvested in the Benguela Current system off Namibia and South Africa. The aim of this study was to elucidate the nutritional condition and feeding preferences of their larvae. Hake eggs and larvae were sampled in austral spring of two consecutive years, 2007 and 2008, off the west coast of South Africa. They were identified to species using genetics, and total lipid content and fatty acid (FA) composition were analysed for each individual egg and larva to compare the condition of different early life stages of both hake species. Higher abundances of M. paradoxus eggs and larvae were consistently found compared to M. capensis. In both species, eggs contained wax esters (WE) and had significantly higher lipid content per dry mass than larvae. Lipid content as well as FA composition changed with the developmental stage of larvae. Quantities of essential fatty acid (EFA) increased with feeding of larvae due to dietary lipid incorporation. In 2007, yolk-sac larvae contained significantly lower total lipids than in 2008. It is argued that this was due to reduced lipid transfer by the spawning females to the eggs. These findings indicate that maternal effects are important in determining condition of hake larvae and that this may have an effect on their survival and subsequent recruitment.  相似文献   

13.
From August 2000 to June 2001, seven egg-carrying female lobster (Homarus americanus) from the Îles de la Madeleine population (Gulf of St. Lawrence, Canada) were held under a simulated seasonal temperature cycle to monitor egg development from extrusion to hatching. For the first time, changes in the yolk components (total lipids and major lipid classes, total proteins) and embryo growth of single eggs were monitored separately over the entire development period. Under the controlled temperature conditions, egg development proceeded in three phases. (1) Autumn, from extrusion to early December, was marked by a rapid increase in the Perkinss eye index and rapid declines in yolk total proteins and triacylglycerols (TAG). Embryo daily growth rate was estimated between 1 and 2 µg proteins day–1. (2) Winter, from late December to early April (temperature stable at ca. 1°C) was characterized by a stationary phase in the evolution of the eye index and yolk lipid use, and embryo growth slowed significantly. (3) Spring, from late April to hatching in June was the period with the most rapid changes in yolk TAG and embryo growth rates >6 µg proteins day–1 were recorded. Almost 65% of the live biomass (total proteins) of the hatching larvae was accumulated during the last few weeks of development. An index of embryo growth efficiency was estimated as the slope of the relationship between embryo total proteins and yolk TAG during egg development. A relationship was found between the initial mean egg dry weight and the embryo growth efficiency index suggesting that under the same experimental conditions bigger eggs used yolk lipids more efficiently and sustained faster embryonic growth than smaller eggs. The relationship may also explain why larger larvae originate from larger eggs.Communicated by R.J.Thompson, St Johns  相似文献   

14.
We characterized the prey field and the lipid classes/fatty acids in the flesh of age 0 juvenile cod (Gadus morhua) during their late-summer/fall arrival and settlement into eelgrass (Zostera marina) in coastal Newfoundland. Examination of available prey demonstrated a high abundance of small zooplankton (Acartia, Microsetella and Oithona sp.) with no larger Calanus sp. prey. Breakpoint analysis showed significant changes in the accumulation of relative (mg g−1 wet weight) and absolute (μg fish−1) amounts of lipid with standard length at the time of settlement (~60 mm standard length). Settling juvenile cod showed an alternate lipid utilization strategy where they catabolized phospholipids (PL) to a greater extent than triacylgylcerols (TAG). Polyunsaturated fatty acids (PUFA) content in cod flesh decreased as fish grew indicating that nearshore zooplankton quality was not optimal for PL formation. The dramatic reduction in cod PL was likely due to both catabolism of muscle and a lack of dietary PUFA suitable for PL synthesis. However, juvenile cod continued to grow, leading to decreased lipid stores and suggesting that cod settling into eelgrass are under intense selection pressure for growth prior to the onset of winter, possibly as a means of escaping gape-limited predation. These data contrast better-studied freshwater and estuarine systems in which lipid storage is critical for successful overwintering.  相似文献   

15.
Plaice (Pleuronectes platessa L.) were sampled during periods of growth and starvation, from the end of the yolk-sac stage through metamorphosis, for changes in water, triglyceride, carbohydrate, total nitrogen, total carbon, and ash. The percentage of water in larvae decreased continuously during development. During post-hatching growth (up to late Stage 2) nitrogen and carbohydrate were laid down faster than triglyceride. The pattern changed during later larval development. The early deposition of protein in preference to neutral fat suggests that conversion of food during growth, without simultaneously laying down fatty energy stores, may be advantageous to pelagic marine fish larvae. During starvation the percentage of water in plaice larvae increased. Triglyceride, carbohydrate, nitrogen and carbon (as a percentage of the dry body weight) decreased during starvation, but ash increased sharply. The continuous use of nitrogen during starvation may be a catabolic adaptation to the marine environment.  相似文献   

16.
Extent of larval growth among marine invertebrates has potentially profound implications for performance by benthic recruits because body size influences many biological processes. Among gastropods, feeding larvae often attain larger size at metamorphic competence than non-feeding larvae of basal gastropod clades. Delay of metamorphosis can further influence size at recruitment if larvae continue to grow during the delay. Some caenogastopod larvae grow during delayed metamorphosis, but opisthobranch larvae do not. Data on larval growth of neritimorph gastropods are needed to help determine which of these growth patterns for planktotrophic gastropod larvae is more derived. We cultured planktotrophic larvae from all three major gastropod clades with feeding larvae through delays of metamorphosis of 3–10 weeks. Larvae of the caenogastropod Euspira lewisii and the euthyneurans Haminoea vesicula (Opisthobranchia) and Siphonaria denticulata (Pulmonata) conformed to previously described growth patterns for their respective major clades. Furthermore, the caenogastropod continued to lengthen the prototroch (ciliary band for swimming and feeding) and to differentiate prospective post-metamorphic structures (gill filaments and radular teeth) during delayed metamorphosis. Larvae of the neritimorph Nerita atramentosa arrested shell growth during delayed metamorphosis but the radula continued to elongate, a pattern most similar to that of non-feeding larvae of Haliotis, a vetigastropod genus. Character mapping on a phylogenetic hypothesis suggests that large larval size and capacity for continued growth during delayed metamorphosis, as exhibited by some caenogastropods, is a derived innovation among feeding gastropod larvae. This novelty may have facilitated post-metamorphic evolution of predatory feeding using a long proboscis.  相似文献   

17.
We assessed the ontogenetic changes in protein content and free amino acids (FAA) in eggs and early larvae of Engraulis ringens (anchoveta) off central Chile on different dates during the spawning season. On all sampling dates, a reduction in embryonic yolk-sac volume, proteins and FAA concentrations occurred during development. Protein electrophoresis (SDS–PAGE) of eggs and larvae showed at least 22 protein bands: 11 were consumed early and not detected after hatching. The proportion of essential FAA (EFAA) was higher than the proportion of non-essential FAA (NEFAA) in early eggs and in 7 day-old larvae (82.5-73% EFAA respectively). During egg development, the FAA pool was dominated by leucine, alanine and lysine, three amino acids contributing 35–44% of the total FAA in eggs. During larval development, histidine was the most abundant FAA. In July, total FAA constituted 13–18% of the egg dry weight. A similar proportion (45–51%) occurred in July between protein plus FAA and total lipids. The differences in egg size during the spawning season along with variability in batch composition suggests that the female spawning condition is a major factor determining egg quality and early offspring success.  相似文献   

18.
Pleuragramma antarcticum is a key component of the neritic assemblages in the Antarctic coastal waters. Larvae of this species were sampled from 2008 to 2011 in the Dumont d’Urville Sea (East Antarctica). The lipid class composition [triacylglycerols (TAG), cholesterol (Chol) and polar lipids (PL)] of larvae was measured to assess the larval condition. The total amount of lipids was linearly related to the quantity of structural polar lipids, suggesting that growth is favored over lipid storage. The TAG:Chol ratio showed interannual variability in the condition of fish larvae, probably related to prey availability. Nevertheless, the essential fatty acids composition of polar lipids illustrates that larvae with low levels of TAG:Chol could be either growing or under starvation. Only the combination of a low TAG:Chol ratio and low polar lipids content, which can also be mobilized during starvation periods, allowed identification of larvae in poor condition. This lipid condition index should be of great assistance to evaluate the probability of survival of P. antarcticum larvae in long-term monitoring. It has widespread applicability and should also be useful in the diagnosis of nutritional condition in other species.  相似文献   

19.
This study demonstrates that the timing of larval starvation did not only determine the larval quality (shell length, lipid content, and RNA:DNA ratio) and the juvenile performance (growth and filtration rates), but also determine how the latent effects of larval starvation were mediated in Crepidula onyx. The juveniles developed from larvae that had experienced starvation in the first two days of larval life had reduced growth and lower filtration rates than those developed from larvae that had not been starved. Lower filtration rates explained the observed latent effects of early larval starvation on reduced juvenile growth. Starvation late in larval life caused a reduction in shell length, lipid content, and RNA:DNA ratio of larvae at metamorphosis; juveniles developed from these larvae performed poorly in terms of growth in shell length and total organic carbon content because of “depletion of energy reserves” at metamorphosis. Results of this study indicate that even exposure to the same kind of larval stress (starvation) for the same period of time (2 days) can cause different juvenile responses through different mechanisms if larvae are exposed to the stress at different stages of the larval life.  相似文献   

20.
The biochemical composition of the adult body tissue is similar in Littorina littorea, L. littoralis, L. saxatilis and L. neritoides. In the newly crawling metamorphosed young of L. littoralis and L. saxatilis, the biochemical composition is similar to that of the mature adults. The newly released planktonic veliger larvae of L. littorea and L. neritoides, which represent and earlier stage of development than the newly crawling young, have a neutral lipid level (mean, 16.5% of ash-free dry flesh weight) approximately three times the level (5.4%) in the newly crawling young of L. littoralis and L. saxatilis. Otherwise the biochemical composition of free-swimming larvae is similar to that of newly crawling young and adults. Neutral lipid is apparently utilised by L. littoralis and L. saxatilis larvae during larval development and metamorphosis. It is suggested that neutral lipid is the major energy reserve of Littorina veliger larvae whereas in the adults, as exemplified by L. littorea, both lipid and carbohydrate are important as energy reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号