首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Field water balance of landfill final covers   总被引:2,自引:0,他引:2  
Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into underlying waste. Conventional covers employing resistive barriers as well as alternative covers relying on water-storage principles were monitored in large (10 x 20 m), instrumented drainage lysimeters over a range of climates at 11 field sites in the United States. Surface runoff was a small fraction of the water balance (0-10%, 4% on average) and was nearly insensitive to the cover slope, cover design, or climate. Lateral drainage from internal drainage layers was also a small fraction of the water balance (0-5.0%, 2.0% on average). Average percolation rates for the conventional covers with composite barriers (geomembrane over fine soil) typically were less than 12 mm/yr (1.4% of precipitation) at humid locations and 1.5 mm/yr (0.4% of precipitation) at arid, semiarid, and subhumid locations. Average percolation rates for conventional covers with soil barriers in humid climates were between 52 and 195 mm/yr (6-17% of precipitation), probably due to preferential flow through defects in the soil barrier. Average percolation rates for alternative covers ranged between 33 and 160 mm/yr (6 and 18% of precipitation) in humid climates and generally less than 2.2 mm/yr (0.4% of precipitation) in arid, semiarid, and subhumid climates. One-half (five) of the alternative covers in arid, semiarid, and subhumid climates transmitted less than 0.1 mm of percolation, but two transmitted much more percolation (26.8 and 52 mm) than anticipated during design. The data collected support conclusions from other studies that detailed, site-specific design procedures are very important for successful performance of alternative landfill covers.  相似文献   

2.
In the investigation of soil cover design options for final decommissioning of reactive mine waste, it is often necessary to analyze or predict the anticipated cover performance as a function of the cost of implementation, which is governed by the type, number and thickness of the layers in the cover system. An example of such investigation is presented in this study where one-dimensional evaporation from hypothetical moisture-retaining cover systems is simulated to assess the influence of several cover properties and hydrogeologic parameters on performance. The commercially available transient flow model, SoilCover, was used to compute suction and water content profiles for different cover design scenarios. The predicted water content profile and porosity of layers were then used to estimate the oxygen diffusion coefficients of the various layers. The oxygen diffusion coefficients were used to estimate oxygen flux through the cover systems. The oxygen flux was, in turn, related to the maximum acid flux. The studied cover and hydrogeologic parameters included soil type, thickness of barriers, and water table elevation. Two types of infiltration and oxygen barrier and two types of capillary layer with different thicknesses were studied. The water table was either kept constant at the base of the waste (tailings) or dropped by 0.5, 1, 2, and 3m over 120 days. The results showed that the relationship between water table depression and the thickness of capillary layers, on one hand, and desaturation of the infiltration and oxygen barrier, on the other, is not linear. Relationships between oxygen flux and barrier thickness and between cost increase and performance improvement of the studied cover systems are presented. Finally, a method that outlines steps for site-specific and economically feasible design of multi-layer cover systems is introduced.  相似文献   

3.
Alumina extraction from bauxite ore with strong alkali produces waste bauxite refinery residue consisting of residue sand and red mud. The amount and composition of refinery residue depend on the purity of the bauxite ore and extraction conditions, and differs between refineries. The refinery residue is usually stored in engineered disposal areas that eventually have to be revegetated. This is challenging because of the alkaline and sodic nature of the residue. At Alcan Gove’s bauxite refinery in Gove, Northern Territory, Australia, research into revegetation of bauxite residue has been conducted since the mid-1970s. In this review, we discuss approaches taken by Alcan Gove to achieve revegetation outcomes (soil capping of refinery residue) on wet-slurry disposal areas. Problems encountered in the past include poor drainage and water logging during the wet season, and salt scalding and capillary rise during the dry season. The amount of available water in the soil capping is the most important determinant of vegetation survival in the seasonally dry climate. Vegetation cover was found to prevent deterioration of the soil cover by minimising capillary rise of alkalinity from the refinery residue. The sodicity and alkalinity of the residue in old impoundments has diminished slightly over the 25 years since it was deposited. However, development of a blocky structure in red mud, presumably due to desiccation, allows root penetration, thereby supplying additional water to salt and alkali-tolerant plant species. This has led to the establishment of an ecosystem that approaches a native woodland.  相似文献   

4.
Data provided by the Australian Commonwealth Bureaus of Meteorology and Mineral Resources are used in this water budget study of the Queanbeyan River watershed. Air and soil temperatures show close correlation from month to month during the five-year period. A close parallel also exists for the air temperature values and the seasonal variations in the Nett-Moisture (rainfall minus evaporation) plots. Ground-water levels appear to be influenced by drought periods and by under groundwater storage conditions such as “nick-points” in the sub-surface migration conditions. The groundwater levels were unusually high early in the drought year of 1964-65. The annual rainfall totals for 1962, 1963, and 1966 were all exceeded by the evaporation totals. In 1964 and in 1965 (the drought year) the evaporation total exceeded the rainfall total. The minimum annual water discharge values for the Queanbeyan River ranged from 4.9″ in 1963 to 1.4′ in 1965.  相似文献   

5.
ABSTRACT: The large volumes of ground water that are discharged from the Everglades toward the Miami metropolitan area have historically posed a significant environmental water supply problem. In order to analyze the effects of seepage barriers on these subsurface outflows, the analytic element modeling code GFLOW was used to construct a ground water flow model of a region that includes a portion of the Everglades along with adjacent developed areas. The hydrology of this region can be characterized by a highly transmissive surficial aquifer in hydraulic contact with wetlands and canals. Calibration of the model to both wet and dry season conditions yielded satisfactory results, and it was concluded that the analytic element method is a suitable technique for modeling ground water flow in the Everglades environment. Finally, the model was used to evaluate the potential effectiveness of a subsurface barrier approximately two miles long for increasing water levels within the adjacent fringes of the Everglades National Park. It was found that the barrier had a negligible effect on water levels due to both its relatively short length and the high transmissivity of the surficial aquifer.  相似文献   

6.
ABSTRACT: The Everglades Agricultural Area (EAA) covers 2,850 km2 in area and is characterized by high water table and organic soil. The area is actively irrigated and drained as a function of weather conditions and crop status. Anthropogenic activities in the basin have resulted in nutrient-enriched drainage water that is discharged to Lake Okeechobee and the Everglades ecosystem. Water quantity and quality issues of the basin have become of increasing interest at local, state, and federal levels, so legislative and regulatory measures have been taken to improve water quality in discharges from the basin. In this study, simulation of hydrologic conditions and soil moisture were conducted using 100 years of daily synthetic rainfall data. From the simulations, the statistical distribution of half-month drainage discharge and supplemental water use in the basin was developed. The mean annual drainage/runoff was 49 cm, the mean supplemental water was 30 cm, and the mean annual a real rainfall was 122 cm. On the average, drainage exceeded supplemental water use in the months of June to September while from December to March drainage and supplemental water use were equivalent. Supplemental water use exceeded drainage in the months of October, November, April, and May. High drainage occurred in June and September; smallest drainage was in February. On the average, the highest supplemental water use occurred in May and November. The 10-year return period of annual drainage during wet and dry cycles were 60 cm and 38 cm per year, respectively. The semi-monthly drainage coefficient of variation (cv) is above 100 percent for the period from the second half of October to end of April. The cv is lower than 100 percent for the remaining season (wet season). The purpose of this paper is to present the magnitude, temporal, and frequency distribution of drainage runoff generation and supplemental water use in the EAA basin. Information on statistics of drainage will contribute to the optimization of the design and operation of drainage water treatment systems.  相似文献   

7.
Surface covers are used to isolate contaminants in hazardous and low-level radioactive sites for time frames ranging from hundreds of years to millennia or more. In the absence of data for such durations, the long-term performance of surface barriers can only be represented with short-term tests or inferred from analogs and modeling. This paper provides evidence of field performance of soil covers for periods up to 17 yr. The results of lysimeter studies from a semiarid site in Washington State show that a cover design known as the Hanford Barrier, which consists of 1.5 m of silt loam above a sand-gravel capillary break, can nearly eliminate drainage. The results were similar if plants were present or not, demonstrating the robustness of the design. Furthermore, reducing the silt loam thickness to 1.0 m (as might occur via erosion), with or without plants, did not lead to drainage. When irrigated to mimic 3x average precipitation conditions, the vegetated Hanford Barrier continued to prevent drainage. Overall, the results showed no loss in performance during the 17 yr of testing. Only when plants were eliminated completely from the 3x precipitation test did drainage occur (rates ranged from 6 to 16 mm yr(-1)). In a separate test, replacing the top 0.2 m of silt loam with dune sand and reducing the plant cover did not lead immediately to the onset of drainage, but soil matric heads within the silt loam noticeably increased. This observation suggests that dune sand migration onto a surface cover has the potential to reduce a cover's ability to minimize deep drainage.  相似文献   

8.
ABSTRACT: Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum(Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus(Scribner and Smith) Gould spp. lanceolaus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).  相似文献   

9.
土壤中毛管水是传递压力的,毛管水运动的方向,受土壤上层温度变化和土面蒸发制约,与土壤中汽态水的运动方向(由热至冷)一致。下午和晚上因地面辐射而冷却,闭塞空气收缩,潜水向上通过毛细管吸入闭塞空气中,潜水位下降;上午和白天因地面日晒,土温升高,闭塞空气膨胀,排出较粗毛管水,成为重力水而下渗,抬升潜水位。春天大风,土温升高,晚上使潜水位升高,白天土面蒸发加大,又使潜水位下降。用潜水蒸渗仪,可测到大风天改变土壤水分运行的方向。  相似文献   

10.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

11.
In this study, a constrained minimization method, the flexible tolerance method, was used to solve the optimization problems for determining hydrologic parameters in the root zone: water uptake rate, spatial root distribution, infiltration rate, and evaporation. Synthetic soil moisture data were first generated using the Richards' equation and its associated initial and boundary conditions, and these data were then used for the inverse analyses. The results of inverse simulation indicate the following. If the soil moisture data contain no noise, the rate of estimated water uptake and spatial root distribution parameters are equal to the true values without using constraints. If there is noise in the observed data, constraints must be used to improve the quality of the estimate results. In the estimation of rainfall infiltration and surface evaporation, interpolation methods should be used to reduce the number of unknowns. A fewer number of variables can improve the quality of inversely estimated parameters. Simultaneous estimation of spatial root distribution and water uptake rate or estimation of evaporation and water uptake rate is possible. The method was used to estimate the water uptake rate, spatial root distribution, infiltration rate, and evaporation using long‐term soil moisture data collected from Nebraska's Sand Hills.  相似文献   

12.
ABSTRACT: This study evaluated the impact of selected soil surface characteristics on infiltration rates and sediment production from interrill erosion from loam soil. Treatments were two different grass species (crested wheatgrass and intermediate wheatgrass), three levels of grass cover (30, 50, and 80 percent), four levels of rock cover (5, 10, 15, and 20 percent), and six levels of simulated trampling (10 to 60 percent of the respective plot area by 10 percent increments). Results indicated that plots with sod forming grass infiltrated only slightly more water than plots with bunchgrass, though the differences were significant. Trampling reduced infiltration rates significantly. On uncompacted soil, infiltration rates increased as percentage of rock cover increased. Trampling gradually destroyed this relationship however. Rock cover did not significantly affect sediment production. The tradeoff between vegetal cover and rock cover was affected by simulated trampling. Once trampling disturbance reached 20 percent, no relationship between vegetal cover and rock cover existed. Trampling was the most important factor influencing infiltration rates, explaining 35 to 48 percent of the variation in infiltration rates. The most important factor influencing sediment production was grass cover, which explained 40 to 62 percent of the variations associated with sediment yield at various trampling percentages. Results strongly suggest that, for slopes and soils as used here, adequate watershed protection may be obtained by maintaining 50 percent protective ground cover. Additional validation studies are recommended.  相似文献   

13.
Understanding the problems of grazing land in vertisol areas and seeking long-lasting solutions is the central point where mixed crop livestock is the second stay for the majority of the population. In order to understand this, the current study was conducted at two sites, one with 0–4% slope and the other with 4–8% slope at Ginchi watershed, 80 km west of Addis Ababa, Ethiopia. The specific objectives of the study were to quantify changes in plant species richness, biomass, plant cover, and soil physical and hydrological properties. The grazing regimes were: moderate grazing (regulated), heavy grazing (free grazing), and no grazing (closed to any grazing), which was considered the control treatment. The results showed that the biomass yield in nongrazed plots was higher than in the grazed plots. However, the biomass yield in grazed plots improved over the years. Species richness and percentage of dominant species attributes were better in medium grazed plots than the other treatments. Soil compaction was higher in very heavily grazed plots than in nongrazed and medium-grazed plots. In contrast to that, the soil water content and infiltration rate were better in nongrazed plots than in grazed plots. Soil loss in grazed plots decreased with the increase of biomass yields and as the soil was more compacted by livestock trampling during the wet season. Finally since the medium stocking rate is better in species richness and plant attributes, and lies between nongrazed and heavily grazed plots in the rest of the measured parameters, it could be the appropriate stocking rate to practice by the smallholder farmer.  相似文献   

14.
ABSTRACT: Ground water and surface water interaction in the prairie pothole region of the United States and Canada is seasonally dominated by the presence of thick, frozen soil layers that affect infiltration. During a spring thaw, the subsoil may remain frozen, preventing infiltration. The impact of the frozen soil layer on the timing of infiltration of depressional‐focused recharge to the ground water is not clearly understood. The objective of this paper is to relate changes in the water table during spring to changes in frost depth and soil water content. A depression and adjacent upland study site were instrumented with CRREL‐type frost tubes, neutron probe access tubes, and ground water monitoring wells. Increases in water table levels in a depression occurred before the frost layer decomposed and infiltrating water quickly formed a recharge mound. Water table responses at the upland site took place as two events. The first event was a gradual rise, probably caused by the lateral dissemination of the recharge mound. The second rise was a rapid rise coinciding with the decomposition of the soil frost layer. Because of the accumulation of surface water in depressions, agricultural practices that remove water from a field can affect water resources management by limiting the addition of water recharge to unconfmed ground water.  相似文献   

15.
Abstract:  Automated electronic soil moisture sensors, such as time domain reflectometry (TDR) and capacitance probes are being used extensively to monitor and measure soil moisture in a variety of scientific and land management applications. These sensors are often used for a wide range of soil moisture applications such as drought forage prediction or validation of large‐scale remote sensing instruments. The convergence of three different research projects facilitated the evaluation and comparison of three commercially available electronic soil moisture probes under field application conditions. The sensors are all installed in shallow soil profiles in a well instrumented small semi‐arid shrub covered subwatershed in Southeastern Arizona. The sensors use either a TDR or a capacitance technique; both of which indirectly measure the soil dielectric constant to determine the soil moisture content. Sensors are evaluated over a range of conditions during three seasons comparing responses to natural wetting and drying sequences and using water balance and infiltration simulation models. Each of the sensors responded to the majority of precipitation events; however, they varied greatly in response time and magnitude from each other. Measured profile soil moisture storage compared better to water balance estimates when soil moisture in deeper layers was accounted for in the calculations. No distinct or consistent trend was detected when comparing the responses from the sensors or the infiltration model to individual precipitation events. The results underscore the need to understand how the sensors respond under field application and recognize the limitations of soil moisture sensors and the factors that can affect their accuracy in predicting soil moisture in situ.  相似文献   

16.
ABSTRACT Spring runoff from two forested watersheds in northern Minnesota is a function of annual snowfall, soil water recharge, and water supply rates. A drainage basin with a clay soil and a hardwood overstory had greater snowmelt and water supply rates than another drainage basin with a sandy soil and conifer overstory. The average soil water recharge rate for the clay soil was 28 percent less than for the sandy soil. The lower recharge rate of the clay soil resulted in spring runoff which averaged 40 percent of water supplied during the three year study while an average of two percent was produced on the sandy soil. Soil frost which affected soil water recharge varied between soil types and was influenced by amount of soil water storage and snow cover.  相似文献   

17.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

18.
Subsurface drainage systems are useful tools to study chemical leaching in soils. Our objective was to compare the breakthrough behavior of bromide, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamid] to tile drains under two fall tillage practices (conventional tillage [CT] with a moldboard plow, and reduced tillage [RT] with a chisel plow) in field plots cultivated with corn (Zea mays L.). Leachate volume were greater in RT than in CT, with no statistical differences. Soil analysis showed that bromide migrated deeper in the soil profile than both herbicides, with little tillage effect. All chemicals were detected in drainage water at the same time and followed an event-driven behavior. Tillage had no effect on atrazine and metolachlor found in drainage water, while bromide concentration peaks were higher in RT than in CT in 1999. Concentration peaks were recorded earlier for atrazine and metolachlor than for bromide. Plots of cumulative relative chemical mass (cumulative mass divided by total mass measured in drainage) as a function of cumulative drainage were mostly linear for bromide, while they were S-shaped for both herbicides. Drainage that corresponded to 50% of relative cumulative mass ranged from 40 to 55% for bromide and from 5 to 28% for both herbicides. Rapid chemical movement to tile drains suggested that preferential flow was important in both CT and RT, and that these tillage practices had little influence on this phenomena.  相似文献   

19.
A field plot experiment was conducted in the Palestinian Autonomous Areas to study the effect of stonewalled terracing on soil and water conservation as compared to the nonterraced areas. Effects of the wheat canopy were considered as a second treatment. The experiment was undertaken over a period of two seasons (2000 and 2001). The results of the experiment found that the mean soil erosion was significantly lower (P < 0.05) in the terraced plots than in those that were nonterraced (182 kg/ha and 3525 kg/ha during the first season, 1769 kg/ha and 5057 kg/ha during the second season for terraced and nonterraced plots, respectively). A similar trend was observed with respect to runoff in areas under the same treatments. The wheat canopy showed lower, but not significant runoff and erosion in most of the cases for both seasons. Due to better soil and water conservation, the terraced plots obtained significantly higher total plant dry matter than nonterraced plots (1570 and 630 kg/ha in 2000, 2545 and 889 kg/ha in 2001 for terraced and nonterraced treatment, respectively). The runoff coefficient was 20% and 4% for the nonterraced and terraced plots, respectively. Rainstorms with intensity ≥4 mm/hand rainfall ≥10 mm are more likely to cause runoff and erosion.  相似文献   

20.
Soil water repellency in golf putting greens may induce preferential "finger flow," leading to enhanced leaching of surface applied fungicides. We examined the effects of root zone composition, treatment with a non-ionic surfactant, and the use of the fungicide iprodion or a combination of azoxystrobin and propiconazole on soil water repellency, soil water content distributions, fungicide leaching, and turf quality during 1 yr. Soil water repellency was measured using the water drop penetration time (WDPT) test and tension infiltrometers. Our study was made on a 3-yr-old experimental green seeded with creeping bentgrass (Agrostis stolonifera L.) 'Penn A-4' at Landvik in southeast Norway. The facility consists of 16 lysimeters with two different root zone materials: (i) straight sand (1% gravel, 96% sand, 3% silt and clay, 4 g kg(-1) organic matter) (SS) and (ii) straight sand mixed with garden compost to an organic matter content of 21 g kg(-1) (Green Mix [GM]). Surfactant treatment resulted in 96% lower average WDPTs at 1 cm depth, three times higher water infiltration rates at the soil surface, and reduced spatial variation in soil water contents. Fungicide leaching was close to zero for the GM lysimeters probably due to stronger sorption. Concentrations in the drainage water from SS lysimeters often exceeded surface water guideline values for all three fungicides, but surfactant treatment dramatically reduced fungicide leaching from these lysimeters. In autumn and winter, surfactant-treated plots were more infected with fungal diseases probably because of higher water content in the turfgrass thatch layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号