首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Improper pesticide management can lead to environmental problems such as water quality degradation and ecological stress. Recent research in our laboratory has focused on development of constructed wetlands to assimilate pesticide-contaminated water. For improved aesthetics, these wetlands have been established with ornamental plant species. The effectiveness of a plant species for phytoremediation depends in part on its tolerance for the contaminant. Plant tolerance for pesticides may vary depending on plant age and size. This study examined the influence of plant age and size on the uptake, distribution, and toxicity of the herbicide simazine [2-chloro-4,6-bis(ethylamino)-1,3,5-triazine] in two ornamental wetland plants: parrot feather [Myriophyllum aquaticum (Vell.) Verdc.] and canna (Canna x hybrida L. 'Yellow King Humbert'). Plants of different ages and sizes were exposed to simazine in 10% Hoagland's nutrient solution. Toxicity was characterized using plant growth, water uptake, and photosynthetic yield during exposure and postexposure periods. In addition, other plants were exposed to [14C] simazine in nutrient medium to characterize pesticide uptake and translocation. Four-week-old parrot feather and canna were more tolerant of simazine than two-week-old plants. The two-week-old plant tissues of both species had higher tissue burdens of simazine than four-week-old plants. Simazine was primarily accumulated in the leaves of both parrot feather and canna. These results suggest that plants in a constructed wetland designed for simazine assimilation would be more vulnerable to simazine toxicity shortly after emergence.  相似文献   

2.
Constructed wetlands (CW) usually require large land areas for treating wastewater. This study evaluated the feasibility of applying CW with less land requirement by operating a group of microcosm wetlands at a hydraulic retention time (HRT) of less than 4 d in southern Taiwan. An artificial wastewater, simulating municipal wastewater containing 200 mg L(-1) of chemical oxygen demand (COD), 20 mg L(-1) of NH4+-N (AN), and 20 mg L(-1) of PO4(3-)-P (OP), was the inflow source. Three emergent plants [reed, Phragmites australis (Cav.) Trin. ex Steud.; water primrose, Ludwigia octovalvis (Jacq.) P.H. Raven; and dayflower, Commelina communis L.] and two floating plants [water spinach, Ipomoea aquatica Forssk.; and water lettuce, Pistia stratiotes L.] plants were tested. The planted systems showed more nutrient removal than unplanted systems; however, the type of macrophytes in CW did not make a major difference in treatment. At the HRTs of 2 to 4 d, the planted system maintained greater than 72,80, and 46% removal for COD, AN, and OP, respectively. For AN and OP removal, the highest efficiencies occurred at the HRT of 3 d, whereas maximum removal rates for AN and OP occurred at the HRT of 2 d. Both removal rates and efficiencies were reduced drastically at the HRT of 1 d. Removals of COD, OP, and AN followed first-order reactions within the HRTs of 1 to 4 d. The efficient removals of these constituents obtained with HRT between 2 and 4 d indicated the possibility of using a CW system for wastewater treatment with less land requirement.  相似文献   

3.
The effect of two wetland plants, Typha latifolia L. (cattail) and Phragmites australis (Cav.) Trin. ex Steud (common reed), on the fate of Cr(VI) in wetland sediments was investigated using greenhouse bench-scale microcosm experiments. The removal of Cr(VI) was monitored based on the vertical profiles of aqueous Cr(VI) in the sediments. The Cr(VI) removal rates were estimated taking into account plant transpiration, which was found to significantly concentrate dissolved species in the sediments. After correcting for evapotranspiration, the actual Cr(VI) removal rates were significantly higher than would be inferred from uncorrected profiles. On average, the Cr(VI) removal rates were 0.005 to 0.017 mg L(-1) d(-1), 0.0003 to 0.08 mg L(-1) d(-1), and 0.004 to 0.13 mg L(-1) d(-1) for the control, T. latifolia, and P. australis microcosms, respectively. The fate of the removed Cr(VI) was examined by determining the quantity and chemical speciation of the Cr in the sediment and plant materials. Chromium(III) was the dominant form of Cr in both the sediment and plants, and precipitation of Cr(III) in the sediment was the major pathway responsible for the disappearance of aqueous Cr(VI) from the pore water. Incubation results showed that abiotic reduction was the primary mechanism underlying Cr(VI) removal in the microcosm sediments. Organic compounds produced by plants, including root exudates and mineralization products of dead roots, are thought to be the factor that is either directly or indirectly responsible for the gap between Cr(VI) removal efficiencies in the sediments of the vegetated and unvegetated microcosms.  相似文献   

4.
Heavy metal accumulation by the halophyte species Mediterranean saltbush   总被引:1,自引:0,他引:1  
To identify Cd- and Zn-accumulating plants exhibiting a high growth rate, seeds from the halophyte species Mediterranean saltbush (Atriplex halimus L.) were collected on a heavy-metal-contaminated site in southeastern Spain (Llano del Beal, Cartagena). Seedlings from this ecotype were exposed for 3 wk to 0.1 mM Cd or Zn in a nutrient solution in a fully controlled environment. All plants remained alive and no significant growth inhibition was recorded until the end of the experiment. Mean Cd and Zn accumulation in aerial parts was 830 and 440 mg kg(-1), respectively, and the rate of metal translocation even increased with the duration of stress exposure. Resistance to heavy metals in this species may be partly linked to precipitation of Cd in oxalate crystals in the stems. A Cd-induced decrease in glutathione concentration also suggests that phytochelatins overproduction may occur in these conditions. We conclude that Mediterranean saltbush, which is able to produce up to 5 Mg dry matter ha(-1) yr(-1), may be an effective species for phytoextraction and should be tested for this purpose in field conditions.  相似文献   

5.
DIMBOA (3,4-dihydro-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), a major benzoxazinone of Poaceae plants, was isolated and purified from corn seedlings. The effect of isolated and purified DIMBOA on the degradation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and its toxic breakdown products, desethylatrazine [2-chloro-4-amino-6-(isopropylamino)-s-triazine; DEA] and desisopropylatrazine [2-chloro-4-(ethylamino)-6-amino-s-triazine; DIA], was studied in the absence of plants using batch experiments, while the effect of corn root exudates on these compounds was determined in hydroponic experiments. Degradation experiments were performed in the presence and absence of 50 microM, 1 mM, or 5 mM DIMBOA resulting in ratios of DIMBOA to pesticide of 1:1, 20:1, and 100:1. We observed a 100% degradation of atrazine to hydroxyatrazine within 48 h at a ratio of DIMBOA to atrazine of 100:1. DIMBOA had the largest effect on atrazine, while it was about three times less effective on DEA and DIA. Corn (Zea mays L. cv. LG 2185) was exposed to 10 mg L(-1) of either atrazine, DEA, or DIA for 11 d in a growth chamber experiment. Up to 4.3 micromol L(-1) d(-1) of hydroxyatrazine were formed in the nutrient solutions by plants exposed to atrazine, while the formation of hydroxylated metabolites from plants exposed to DEA and DIA was smaller and also delayed. The formation of hydroxylated metabolites increased in the solution with plant age in all atrazine, DEA, and DIA treatments. HMBOA (3,4-dihydro-2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), the lactam precursor of DIMBOA, and a tentatively identified derivative of MBOA (2,3-dihydro-6-methoxy-benzoxazol-2-one) were detected in the corn root exudates. Mass balance calculations revealed that up to 30% of the disappearance of atrazine and DEA, and up to 10% of DIA removal from the solution medium in our study could be explained by the formation of hydroxylated metabolites in the solution itself. Our results show that higher plants such as corn have the potential to promote the hydrolysis of triazine residues in soils by exudation of benzoxazinones.  相似文献   

6.
The role of nitrilotriacetate in copper uptake by tobacco   总被引:1,自引:0,他引:1  
In growth chamber experiments we studied the effect of nitrilotriacetate (NTA) on Cu uptake by tobacco (Nicotiana tabacum L.). Plants were exposed for 6 d to 126 microM Cu and 500 microM NTA in nutrient solutions without and with 10 g L(-1) montmorillonite. Approximately seven times less Cu was dissolved in the montmorillonite solutions than in the nutrient solutions alone. In the absence of NTA, montmorillonite effectively competed with plant roots for Cu, although Cu remained bound to the roots. Nitrilotriacetate increased Cu uptake and translocation into shoots of tobacco by a factor of 3.5 from the nutrient solution and by a factor of 26 from the montmorillonite nutrient solution. Neither growth reduction nor any other visible sign of Cu toxicity was found in the presence of NTA with Cu concentrations of 190 mg kg(-1) in the shoots. In the absence of NTA, high Cu concentrations in root samples led to a brownish discoloration of the roots.  相似文献   

7.
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.  相似文献   

8.
In this study, a copper-resistant plant growth promoting bacterial (PGPB) strain Ax10 was isolated from a Cu mine soil to assess its plant growth promotion and copper uptake in Brassica juncea. The strain Ax10 tolerated concentrations up to 600 mg CuL(-1) on a Luria-Bertani (LB) agar medium and utilized 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole N source in DF salts minimal medium. The strain Ax10 was characterized as Achromobacter xylosoxidans based on its 16S rDNA sequence homology (99%). The bacterium A. xylosoxidans Ax10 has also exhibited the capability of producing indole acetic acid (IAA) (6.4 microg mL(-1)), and solubilizing inorganic phosphate (89.6 microg mL(-1)) in specific culture media. In pot experiments, inoculation of A. xylosoxidans Ax10 significantly increased the root length, shoot length, fresh weight and dry weight of B. juncea plants compared to the control. This effect can be attributed to the utilization of ACC, production of IAA and solubilization of phosphate. Furthermore, A. xylosoxidans Ax10 inoculation significantly improved Cu uptake by B. juncea. Owing to its wide action spectrum, the Cu-resistant A. xylosoxidans Ax10 could serve as an effective metal sequestering and growth promoting bioinoculant for plants in Cu-stressed soil. The present study has provided a new insight into the phytoremediation of Cu-contaminated soil.  相似文献   

9.
Mahogany, a high biomass fast-growing tropical tree, has recently garnered considerable interest for potential use in heavy metal phytoremediation. This study performed hydroponic experiments with Cd concentration gradients at concentrations of 0, 7.5, 15, and 30 mg L(-1) to identify Cd accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings as well as their potential for phytoextraction. Experimental results indicate that Cd inhibited mahogany seedling growth at the highest Cd exposure concentration (30 mg L(-1)). Nevertheless, this woody species demonstrated great potential for phytoextraction at Cd concentrations of 7.5 and 15 mg L(-1). The roots, twigs, and leaves had extremely large bioaccumulation factors at 10.3-65.1, indicating that the plant extracted large amounts of Cd from hydroponic solutions. Mahogany seedlings accumulated up to 154 mg kg(-1) Cd in twigs at a Cd concentration of 15 mg L(-1). Although Cd concentrations in leaves were <100 mg kg(-1), these concentrations markedly exceed the normal ranges for other plants. Due to the high biomass production and Cd uptake capacity of mahogany shoots, this plant is a potential candidate for remediating Cd-contaminated sites in tropical regions.  相似文献   

10.
为探讨蓖麻(Ricinus communist L.)对锰矿区土壤生态修复及能源化利用潜力,将不同品种蓖麻湘蓖1号和淄蓖7号播种在锰尾矿库土壤上,进入生殖生长阶段时采收全株,测定栽植土壤及植株根、茎、叶中5种重金属元素含量。结果显示:土壤中Mn平均含量最高达7884.96 mg&#183;kg-1,超过国家规定的土壤环境质量域级标准6.5倍;湘蓖1号不同器官的Mn浓度从高至低为根&gt;叶&gt;茎,淄蓖7号不同器官Mn含量叶&gt;茎&gt;根,其叶中Mn平均浓度最高为765.43 mg&#183;kg-1,较湘蓖1号叶中的平均含量高出79.53%, Pb、Cu、Cr含量及叶/根比值均大于湘蓖1号;植株体内重金属含量与土壤中重金属浓度的相关分析表明,重金属的积累量和转移量,受到土壤中几种重金属元素的共同影响。结果说明:2个品种的蓖麻均可以作为锰矿区能源化修复利用,对重金属的吸收和转运在品种间存在差异,淄蓖7号地上部分对重金属的迁移能力强于湘蓖1号。  相似文献   

11.
Previous laboratory-scale studies have documented perchlorate ClO(-)(4) uptake by different plant species, but less information is available at field scale, where ClO(-)(4) uptake may be affected by environmental conditions, such as distance to streams or shallow water tables, exposure duration, and species. This study examined uptake of ClO(-)(4) in smartweed (Polygonum spp.) and watercress (Nasturtium spp.) as well as more than forty trees, including ash (Fraxinus greggii A. Gray), chinaberry (Melia azedarach L.), elm (Ulmus parvifolia Jacq.), willow (Salix nigra Marshall), mulberry [Broussonetia papyrifera (L.) Vent.], and hackberry (Celtis laevigata Willd.) from multiple streams surrounding a perchlorate-contaminated site. Results indicate a large potential for ClO(-)(4) accumulation in aquatic and terrestrial plants, with ClO(-)(4) concentration in plant tissues approximately 100 times higher than that in bulk water. Perchlorate accumulation in leaves of terrestrial plants was also dependent on species, with hackberry, willow, and elm having a strong potential to accumulate ClO(-)(4). Generally, trees located closer to the stream had a higher ClO(-)(4) accumulation than trees located farther away from the stream. Seasonal leaf sampling of terrestrial plants indicated that ClO(-)(4) accumulation also was affected by exposure duration, with highest accumulation observed in the late growing cycle, although leaf concentrations for a given tree were highly variable. Perchlorate may be re-released into the environment via leaching and rainfall as indicated by lower perchlorate concentrations in collected leaf litter. Information obtained from this study will be helpful to understand the fate of ClO(-)(4) in macrophytes and natural systems.  相似文献   

12.
Phytochelatins are enzymatically synthesized peptides involved in metal detoxification and have been measured in plants grown at very high Cd concentrations, but few studies have examined the response of plants at lower environmentally relevant Cd concentrations. Using an ethylenediaminetetraacetic acid (EDTA)-buffered nutrient medium, we have varied Cd exposure and measured phytochelatin and glutathione concentrations in romaine lettuce (Lactuca sativa L. var. longifolia Lam. var. Parris Island) grown in a flow-through hydroponic (FTH) system. Very low free ionic Cd (10(-9.6) M) increased average phytochelatin concentrations above those of controls, and increasing Cd resulted in increased phytochelatin production, though increases were tissue dependent. Glutathione concentrations also increased with increasing Cd. In other standard hydroponic experiments, the media were manipulated to vary total Cd concentration while the ionic Cd was fixed. We found that the total amount of Cd (primarily EDTA bound) in the medium altered thiol production in roots, whereas thiols in leaves remained constant. The Cd uptake into roots and translocation to old leaves was also influenced by the total concentration in the medium. Cadmium in all tissues was lower and in some tissues thiol concentrations were higher than in FTH-grown plants grown in identical medium, suggesting that nutrient delivery technique is also an important variable. Though phytochelatin and glutathione production can be sensitive to changes in bioavailable Cd, thiol concentrations will not necessarily reflect the Cd content of the plant tissues.  相似文献   

13.
Revegetation of arsenic (As)-rich mine spoils is often impeded by the lack of plant species tolerant of high As concentrations and low nutrient availability. Basin wildrye [Leymus cinereus (Scribner & Merr.) A. L?ve] has been observed to establish naturally in soils with elevated As content and thus may be useful for the stabilization of As-contaminated soils. An experiment was conducted to evaluate how variable phosphorus (P) concentrations and inoculation with site-specific arbuscular mycorrhizal fungi influence As tolerance of basin wildrye. Basin wildrye was grown in sterile sand in the greenhouse for 16 weeks. Pots of sterile sand were amended to create one of four rates of As (0, 3, 15, or 50 mg As kg(-1)), two rates of P (3 or 15 mg P kg(-1)), and +/-mycorrhizal inoculation in a 2 x 4 x 2 factorial arrangement. After 16 weeks of growth, plants were harvested, shoots and roots thoroughly washed, and the tissue analyzed for total shoot biomass, total root and shoot As and P concentrations, and degree of mycorrhizal infection. Basin wildrye was found to be tolerant of high As concentrations allowing for vigorous plant growth at application levels of 3 or 15 mg As kg(-1). Arsenic was sequestered in the roots, with 30 to 50 times more As in the roots than shoots under low P conditions. Mycorrhizal infection did not confer As tolerance in basin wildrye nor did mycorrhizal fungi influence biomass production. Phosphorus concentrations of 15 mg kg(-1) effectively inhibited As accumulation in basin wildrye. Basin wildrye has the potential to be used for stabilization of As-rich soils while minimizing exposure to grazing animals following reclamation.  相似文献   

14.
ABSTRACT: Accurate data about nutrient concentrations in wastewater treatment plant effluents are needed for river basin water-quality studies. As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the South Platte River Basin, nutrient data were requested from 31 wastewater-treatment plants located in the basin. This article describes the types of nutrient data available from the plants, examines the variability of effluent nutrient concentrations, and discusses methods for estimation of nutrient concentrations where data are lacking. Ammonia was monitored at 88 percent of the plants, nitrite plus nitrate was monitored at 40 percent of the plants, and organic nitrogen and phosphorus were monitored at less than 25 percent of the plants. Median total nitrogen concentrations and median total phosphorus concentrations were small compared to typical literature estimates for wastewater-treatment plants with secondary treatment. Nutrient concentrations in effluent from wastewater-treatment plants varied widely between and within plants. For example, ammonia concentrations varied as much as 5 mg/L during a day, as much as 10 mg/L from day to day, and as much as 30 mg/L from summer to winter within a plant. In the South Platte River Basin, estimates of median annual ammonia and nitrite plus nitrate concentrations can be improved based on plant processes; and nitrite plus nitrate and organic nitrogen concentrations can be estimated based on ammonia concentrations. However, to avoid large estimation errors, more complete nutrient data from wastewater-treatment plants are needed for integration into river basin water quality studies. The paucity of data hinders attempts to evaluate the relative importance of point source and nonpoint source nutrient loadings to rivers.  相似文献   

15.
The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.  相似文献   

16.
Chemical immobilization, an in situ remediation method where inexpensive chemicals are used to reduce contaminant solubility in contaminated soil, has gained attention. We investigated the effectiveness of lime-stabilized biosolid (LSB), N-Viro Soil (NV), rock phosphate (RP), and anaerobic biosolid (AB) to reduce extractability and plant and gastrointestinal (GI) bioavailability in three Cd-, Pb-, and Zn-contaminated soils from smelter sites. Treated (100 g kg(-1) soil) and control soils were incubated at 27 degrees C and -0.033 MPa (0.33 bar) water content for 90 d. The effect of soil treatment on metal extractability was evaluated by sequential extraction, on phytoavailability by a lettuce bioassay (Lactuca sativa L.), on human GI availability of Pb from soil ingestion by the Physiologically Based Extraction Test. The largest reductions in metal extractability and phytoavailability were from alkaline organic treatments (LSB and NV). Phytotoxic Zn [1188 mg Zn kg(-1) extracted with 0.5 M Ca(NO3)2] in Blackwell soil (disturbed soil) was reduced by LSB, NV, and RP to 166, 25, and 784 mg Zn kg(-1), respectively. Rock phosphate was the only treatment that reduced GI-available Pb in both gastric and intestinal solutions, 23 and 92%, respectively. Alkaline organic treatments (LSB, NV) decreases Cd transmission through the food chain pathway, whereas rock phosphate decreases risk from exposure to Pb via the soil ingestion pathway. Alkaline organic treatments can reduce human exposure to Cd and Pb by reducing Zn phytotoxicity and revegetation of contaminated sites.  相似文献   

17.
Hexavalent chromium [Cr(VI)] is a common contaminant associated with nuclear reactors and fuel processing. Improper disposal at facilities in and and semiarid regions has contaminated underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those in the vadose zone, and to evaluate the potential for enhancing biological Cr(VI) reduction through nutrient addition. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic C (molasses). Nutrient amendments resulted in up to 87% reduction of the initial 67 mg L(-1) Cr(VI) in an unsaturated batch experiment. Molasses and nitrate additions to 15 cm long unsaturated flow columns receiving 65 mg L(-1) Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-d experiment. All of the immobilized Cr was in the form of Cr(III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy, and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.  相似文献   

18.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

19.
Adsorption of arsenic and chromium by mixed magnetite and maghemite nanoparticles from aqueous solution is a promising technology. In the present batch experimental study, a commercially grade nano-size ‘magnetite’, later identified in laboratory characterization to be mixed magnetite–maghemite nanoparticles, was used in the uptake of arsenic and chromium from different water samples. The intent was to identify or develop a practical method for future groundwater remediation. The results of the study showed 96–99% arsenic and chromium uptake under controlled pH conditions. The maximum arsenic adsorption occurred at pH 2 with values of 3.69 mg/g for arsenic(III) and 3.71 mg/g for arsenic(V) when the initial concentration was kept at 1.5 mg/L for both arsenic species, while chromium(VI) concentration was 2.4 mg/g at pH 2 with an initial chromium(VI) concentration of 1 mg/L. Thus magnetite–maghemite nanoparticles can readily adsorb arsenic and chromium in an acidic pH range. Redox potential and pH data helped to infer possible dominating species and oxidation states of arsenic and chromium in solution. The results also showed the limitation of arsenic and chromium uptake by the nano-size magnetite–maghemite mixture in the presence of a competing anion such as phosphate. At a fixed adsorbent concentration of 0.4 g/L, arsenic and chromium uptake decreased with increasing phosphate concentration. Nano-size magnetite–maghemite mixed particles adsorbed less than 50% arsenic from synthetic water containing more than 3 mg/L phosphate and 1.2 mg/L of initial arsenic concentration, and less than 50% chromium from synthetic water containing more than 5 mg/L phosphate and 1.0 mg/L of chromium(VI). In natural groundwater containing more than 5 mg/L phosphate and 1.13 mg/L of arsenic, less than 60% arsenic uptake was achieved. In this case, it is anticipated that an optimum design with magnetite–maghemite nanoparticles may achieve high arsenic uptake in field applications.  相似文献   

20.
We try to elucidate which environmental and soil factors control nitrogen uptake efficiency in citrus. Effects of residence time and nitrogen (N) concentration (three 500-mL applications of 7 mg N L(-1), representative of reclaimed water used for citrus irrigation in central Florida, or one 150-mL application of 70 mg N L(-1)) on nitrogen uptake efficiency (NUE) of young citrus seedlings were studied. Increasing residence times from 2 to 8 h increased NUE from 36 to 82% and from 17 to 34% for high and low application frequencies, respectively. We developed a model to predict N uptake based on root density, N concentration, and soil temperature (Ts). Assuming a base temperature (Tb) of 10 degrees C, N uptake temperature sum (UTS) = sigma(Ts - Tb)/24 (degrees CdN, degree day units of N uptake). To eliminate the risk of N leaching for young seedlings, minimum uptake periods of 5 and 16 degrees CdN were required at initial soil N concentrations of 0.9 and 2.5 mg N L(-1), respectively. After correcting for differences in root length, this information was then used to predict the effect of irrigation practices on N uptake from reclaimed water for mature trees. Applying 2500 mm yr(-1) vs. 400 mm yr(-1) reclaimed water reduced the NUE of N in this water from 100 to 63% during the summer and from 100 to 28% during the winter. Reductions in NUE at higher irrigation rates appeared to be related to N displacement below the root zone prior to complete N uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号