首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population trends from the Breeding Bird Survey are widely used to focus conservation efforts on species thought to be in decline and to test preliminary hypotheses regarding the causes of these declines. A number of statistical methods have been used to estimate population trends, but there is no consensus as to which is the most reliable. We quantified differences in trend estimates or different analysis methods applied to the same subset of Breeding Bird Survey data. We estimated trends for 115 species in British Columbia using three analysis methods: U.S. National Biological Service route regression, Canadian Wildlife Service route regression, and nonparametric rank-trends analysis. Overall, the number of species estimated to be declining was similar among the three methods, but the number of statistically significant declines was not similar (15, 8, and 29 respectively). In addition, many differences existed among methods in the trend estimates assigned to individual species. Comparing the two route regression methods, Canadian Wildlife Service estimates had a greater absolute magnitude on average than those of the U.S. National Biological Service method. U.S. National Biological Service estimates were on average more positive than the Canadian Wildlife Service estimates when the respective agency's data selection criteria were applied separately. These results imply that our ability to detect population declines and to prioritize species of conservation concern depend strongly upon the analysis method used. This highlights the need for further research to determine how best to accurately estimate trends from the data. We suggest a method for evaluating the performance of the analysis methods by using simulated Breeding Bird Survey data.  相似文献   

2.
The recognition that growing proportions of species worldwide are endangered has led to the development of comparative analyses to elucidate why some species are more prone to extinction than others. Understanding factors and patterns of species vulnerability might provide an opportunity to develop proactive conservation strategies. Such comparative analyses are of special concern at national scales because this is the scale at which most conservation initiatives take place. We applied powerful ensemble learning models to test for biological correlates of the risk of decline among the Bolivian mammals to understand species vulnerability at a national scale and to predict the population trend for poorly known species. Risk of decline was nonrandomly distributed: higher proportions of large‐sized taxa were under decline, whereas small‐sized taxa were less vulnerable. Body mass, mode of life (i.e., aquatic, terrestrial, volant), geographic range size, litter size, home range, niche specialization, and reproductive potential were strongly associated with species vulnerability. Moreover, we found interacting and nonlinear effects of key traits on the risk of decline of mammals at a national scale. Our model predicted 35 data‐deficient species in decline on the basis of their biological vulnerability, which should receive more attention in order to prevent their decline. Our results highlight the relevance of comparative analysis at relatively narrow geographical scales, reveal previously unknown factors related to species vulnerability, and offer species‐by‐species outcomes that can be used to identify targets for conservation, especially for insufficiently known species. Predección y Definición de Prioridades de Conservación para Mamíferos de Bolivia con Base en Correlaciones Biológicas del Riesgo de Declinación  相似文献   

3.
From Red Lists to Species of Conservation Concern   总被引:3,自引:0,他引:3  
Abstract:  National red lists of threatened animal and plant species prepared according to the criteria of the World Conservation Union (IUCN) adequately reflect the extinction risk of species within a country but cannot be used directly to set conservation priorities. In particular, the significance of national populations for the conservation of the species as a whole is not taken into account. We present a procedure that can be used to assess national responsibility based on the national red-list status of a species, the international importance of the national population, and the species' "historical rarity" status. We distinguished five responsibility classes for breeding birds: B1, threatened species with internationally important populations in Switzerland; B2, threatened species with internationally less important populations; B3, nonthreatened species with internationally important populations; B4, nonthreatened species with internationally less important populations; and B5, species that have never been common in Switzerland. Two responsibility classes were distinguished for birds occurring in Switzerland as visitors: G1, species with large concentrations in Switzerland and an unfavorable conservation status in Europe, and G2, species with large concentrations in Switzerland and a favorable conservation status in Europe. Two additional classes (G3 and G4) for visiting species occurring in internationally less important numbers are possible but were not analyzed in detail. Responsibility classes B1, B2, B3, G1, and G2 were defined as species of national conservation concern. We developed the method for birds in Switzerland, but it can be used in other countries and for other taxonomic groups as well. It is particularly suitable where national red lists are established according to IUCN guidelines.  相似文献   

4.
Culturomics is emerging as an important field within science, as a way to measure attitudes and beliefs and their dynamics across time and space via quantitative analysis of digitized data from literature, news, film, social media, and more. Sentiment analysis is a culturomics tool that, within the last decade, has provided a means to quantify the polarity of attitudes expressed within various media. Conservation science is a crisis discipline; therefore, accurate and effective communication are paramount. We investigated how conservation scientists communicate their findings through scientific journal articles. We analyzed 15,001 abstracts from articles published from 1998 to 2017 in 6 conservation-focused journals selected based on indexing in scientific databases. Articles were categorized by year, focal taxa, and the conservation status of the focal species. We calculated mean sentiment score for each abstract (mean adjusted z score) based on 4 lexicons (Jockers-Rinker, National Research Council, Bing, and AFINN). We found a significant positive annual trend in the sentiment scores of articles. We also observed a significant trend toward increasing negativity along the spectrum of conservation status categories (i.e., from least concern to extinct). There were some clear differences in the sentiments with which research on different taxa was reported, however. For example, abstracts mentioning lobe finned fishes tended to have high sentiment scores, which could be related to the rediscovery of the coelacanth driving a positive narrative. Contrastingly, abstracts mentioning elasmobranchs had low scores, possibly reflecting the negative sentiment score associated with the word shark. Sentiment analysis has applications in science, especially as it pertains to conservation psychology, and we suggest a new science-based lexicon be developed specifically for the field of conservation.  相似文献   

5.
Rarity in Neotropical Forest Mammals Revisited   总被引:2,自引:1,他引:1  
The identification of rare species is an important goal in conservation biology. Recent attempts to classify rare species have emphasized dichotomies in such characteristics as local population density, area of distribution, and degree of ecological specialization. In particular, Arita et al. (1990) dichotomized 100 Neotropical forest mammals according to local population density and area of distribution. Among these species of mammals, mean body mass was significantly associated with local population density and area of distribution. We argue that the effects of body mass should be removed before species are classified with respect to rarity. We re-evaluated the data on Neotropical mammal species, using regression analyses to remove the effects of body mass on population density and area of distribution, followed by analysis of residuals. This new method resulted in substantial changes in the dichotomous classification of rare species. We combined the analysis of regression residuals with a ranking procedure that assumed that local population density and area of distribution were equally important in their effects on rarity. The new ranking technique produced another different classification of the rarity of the Neotropical forest mammal species. A graphical analysis showed that ranked species differed substantially in their degree of rarity, and in the importance of local population density, area of distribution, or both, to their degree of rarity. The ranking method allows the species of greatest concern to be singled out, it can be modified to include additional variables such as niche breadth, and it should be helpful for making conservation decisions.  相似文献   

6.
Abstract:  Species conservation status is commonly used as a broad-scale indicator of the state of biological diversity. To learn about its value for tracking trends, we examined provincial lists of terrestrial vertebrate species and subspecies at risk in British Columbia, Canada, for 1992 and 2002 to see whether changes in these lists reflected changes in the status of the taxa they represent. Examination of the case histories of individual species and subspecies showed that 65% of additions and deletions to the British Columbia Red List were the result of improvement in knowledge of species status, changes in assessment procedures, and refinements in taxonomy rather than actual changes in a species' status. Comparison to an alternate set of rank scores provided by NatureServe for taxa that appeared on both 1992 and 2002 British Columbia Red Lists revealed changes in status that were not reflected by movement from the list. Estimates of historical conservation status for species on the 1992 British Columbia Red List demonstrated ambiguity around the natural baseline with regard to tracking changes in list composition over time. We discourage the continued use of indicators based solely on conservation status as a means of tracking biodiversity. Instead we recommend advancing strategic indicators around species at risk based on long-term monitoring data, deliberate and explicitly stated baselines, and consistent methods of conservation ranking.  相似文献   

7.
Abstract: Logging is considered the most important threat to species in boreal forests. In contrast to eastern Canada, where most boreal forests remain largely untouched, in Fennoscandia it is possible to assess the cumulative, long-term effects of intensive forestry on wildlife. But harvesting of stands is rapidly changing Canadian boreal forests, which represent an important proportion of the world's boreal forests. We show that Fennoscandia and eastern Canada present striking similarities in terms of forest-age structure, natural-disturbance regime, and structure of bird assemblages, and we provide an assessment of the long-term effects of forestry on eastern Canadian birds of the boreal forest. We used life-history traits from habitat, nesting site, and geographical range to calculate an index of sensitivity to changes induced by modern forestry for boreal species of each region. Tropical migrants commonly found in eastern Canadian boreal forests have life-history traits that are not threat factors in relation to changes caused by modern forestry. Therefore, the general belief that tropical migrants in North America are more sensitive to landscape changes than those in Europe may not hold for species found in the boreal coniferous forests of eastern Canada. Nine Fennoscandian species present high levels of sensitivity, and at least eight eastern Canadian species are of similar concern. In both regions, most of the sensitive species are resident cavity nesters. Given the important similarities between the two regions, the northern expansion of commercial forestry in eastern Canada is likely to result in the significant decline of several resident species, as has occurred in Fennoscandia.  相似文献   

8.
Abstract: New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst‐case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single‐species assessment that is well‐integrated with a broader measurement of impacts on PD owing to climate change and other factors.  相似文献   

9.
Modeling biodiversity dynamics in countryside landscapes   总被引:1,自引:0,他引:1  
Pereira HM  Daily GC 《Ecology》2006,87(8):1877-1885
The future of biodiversity hinges to a great extent on the conservation value of countryside, the growing fraction of Earth's surface heavily influenced by human activities. How many species, and which species, can persist in such landscapes (and analogous seascapes) are open questions. Here we explore two complementary theoretical frameworks to address these questions: species-area relationships and demographic models. We use the terrestrial mammal fauna of Central America to illustrate the application of both frameworks. We begin by proposing a multi-habitat species-area relationship, the countryside species-area relationship, to forecast species extinction rates. To apply it, we classify the mammal fauna by affinity to native and human-dominated habitats. We show how considering the conservation value of countryside habitats changes estimates derived from the classic species-area approach We also examine how the z value of the species-area relationship affects extinction estimates. Next, we present a framework for assessing the relative vulnerability of species to extinction in the countryside, based on the Skellam model of population dynamics. This model predicts the minimum area of contiguous native habitat required for persistence of a species, which we use as an indicator of vulnerability to habitat change. To apply the model, we use our habitat affinity classification of mammals and we estimate life-history parameters by species and habitat type. The resulting ranking of vulnerabilities is significantly correlated with the World Conservation Union (IUCN) Red List assessment.  相似文献   

10.
Northern and Spotted Wolffishes (Anarhichas denticulatus and A. minor) are demersal marine fishes listed as “threatened” in Canadian waters. Both species have unusually large benthic eggs and large size at hatch, which should reduce passive dispersal. We examined population differentiation with microsatellite and AFLP loci across the ranges of both species in the North Atlantic Ocean. Although significant population structure was documented, differentiation was less than expected based on knowledge of life history characteristics. Significant differentiation was found in Northern Wolffish between the Barents Sea and other samples based on both microsatellite and AFLP data. In contrast, population structure in the Spotted Wolffish was notably weaker, particularly with microsatellites. Both species were characterized by low genetic diversity for marine fishes and had significantly lower genetic diversity than the congeneric Atlantic Wolffish. This finding was consistent with the conservation status of these three species and suggests potential vulnerability to over-exploitation in Northern and Spotted Wolffishes.  相似文献   

11.
To aid the recovery of a species, understanding the extent to which populations are connected is useful for targeting conservation efforts. Pacific hake within waters of Puget Sound, Washington State, USA, and Georgia Strait, British Columbia, Canada are listed as a species of concern under the U.S. Endangered Species Act due to dramatic declines in the Puget Sound population. To assess the role of dispersal in the recovery of Pacific hake, we sought to quantify patterns of connectivity between populations in Puget Sound and Georgia Strait. Using natural chemical markers from otoliths of fish sampled from these two populations, we linked natal signatures of fish to signatures of individuals from known spawning grounds. Results indicated that 82 % of individuals collected from Puget Sound (n = 78) were estimated to have originated there, while 40 and 92 % of the individuals collected from two cohorts within Georgia Strait (n = 9 and 24, respectively) had originated from Puget Sound. A trend of “population abandonment” of fish from Puget Sound suggests that recovery of this Pacific hake population will depend on local management practices.  相似文献   

12.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   

13.
Accurate trend estimates are necessary for understanding which species are declining and which are most in need of conservation action. Imperfect species detection may result in unreliable trend estimates because this may lead to the overestimation of declines. Because many management decisions are based on population trend estimates, such biases could have severe consequences for conservation policy. We used an occupancy‐modeling framework to estimate detectability and calculate nationwide population trends for 14 Swiss amphibian species both accounting for and ignoring imperfect detection. Through the application of International Union for Conservation of Nature Red List criteria to the different trend estimates, we assessed whether ignoring imperfect detection could affect conservation policy. Imperfect detection occurred for all species and detection varied substantially among species, which led to the overestimation of population declines when detectability was ignored. Consequently, accounting for imperfect detection lowered the red‐list risk category for 5 of the 14 species assessed. We demonstrate that failing to consider species detectability can have serious consequences for species management and that occupancy modeling provides a flexible framework to account for observation bias and improve assessments of conservation status. A problem inherent to most historical records is that they contain presence‐only data from which only relative declines can be estimated. A move toward the routine recording of nonobservation and absence data is essential if conservation practitioners are to move beyond this toward accurate population trend estimation.  相似文献   

14.
Strategies to reduce, halt, and reverse global declines in marine biodiversity are needed urgently. We reviewed, coded, and synthesized historical and contemporary marine conservation strategies of the Kitasoo/Xai'xais First Nation in British Columbia, Canada to show how their approaches work. We assessed whether the conservation actions classification system by the Conservation Measures Partnership was able to encompass this nation's conservation approaches. All first-order conservation actions aligned with the Kitasoo/Xai'xais First Nation's historical and contemporary marine conservation actions; hereditary chief management responsibility played a key role. A conservation ethic permeates Kitasoo/Xai'xais culture, and indigenous resource management and conservation existed historically and remains strong despite extreme efforts by colonizers to suppress all indigenous practices. The Kitasoo/Xai'xais's embodiment of conservation actions as part of their worldview, rather than as requiring actions separate from everyday life (the norm in nonindigenous cultures), was missing from the conservation action classification system. The Kitasoo/Xai'xais are one of many indigenous peoples working to revitalize their governance and management authorities. With the Canadian government's declared willingness to work toward reconciliation, there is an opportunity to enable First Nations to lead on marine and other conservation efforts. Global conservation efforts would also benefit from enhanced support for indigenous conservation approaches, including expanding the conservation actions classification to encompass a new category of conservation or sacredness ethic.  相似文献   

15.
Use of Substitute Species in Conservation Biology   总被引:2,自引:0,他引:2  
Abstract:  In conservation biology, researchers often want to study the reasons why an endangered population is faring poorly but are unable to study it directly for logistical or political reasons. Instead they study a species that substitutes for the one of concern in the hope that it will cast light on the conservation problem. Here we outline the assumptions underlying this approach. Substitutes can be different populations or species and may be chosen because they are similar biologically to the target or representatives of a constellation of species of which the target is one. They also may be used to develop a predictive model to which the conservation target can be related. For substitutes to be appropriate, they should share the same key ecological or behavioral traits that make the target sensitive to environmental disturbance and the relationship between population vital rates and level of disturbance should match that of the target. These conditions are unlikely to pertain in most circumstances and the use of substitute species to predict endangered populations' responses to disturbance is questionable.  相似文献   

16.
Abstract:  Systems of geographically isolated habitat patches house species that occur naturally as small, disjunct populations. Many of these species are of conservation concern, particularly under the interacting influences of isolation and rapid global change. One potential conservation strategy is to prioritize the populations most likely to persist through change and act as sources for future recolonization of less stable localities. We propose an approach to classify long-term population stability (and, presumably, future persistence potential) with composite demographic metrics derived from standard population-genetic data. Stability metrics can be related to simple habitat measures for a straightforward method of classifying localities to inform conservation management. We tested these ideas in a system of isolated desert headwater streams with mitochondrial sequence data from 16 populations of a flightless aquatic insect. Populations exhibited a wide range of stability scores, which were significantly predicted by dry-season aquatic habitat size. This preliminary test suggests strong potential for our proposed method of classifying isolated populations according to persistence potential. The approach is complementary to existing methods for prioritizing local habitats according to diversity patterns and should be tested further in other systems and with additional loci to inform composite demographic stability scores.  相似文献   

17.
Rarity is often considered an indication of species extinction risk, and it is frequently used to obtain measures of species vulnerability. However, there is no strong evidence of a correlation between species vulnerability and threat. Moreover, there is no consensus about how rarity should be measured. I used a multidimensional characterization of species rarity to calculate a vulnerability index for tenebrionid beetles inhabiting an Italian region in the Mediterranean biodiversity hotspot. I used different metrics to examine 3 dimensions of rarity: species range, ecology, and population. Species with rarity values below the median were scored as rare for each dimension. I combined rarity scores into a vulnerability index. I then correlated species vulnerability with range trends (expanded vs. contracted). Different measures of the same rarity dimension were strongly correlated and produced similar vulnerability scores. This result indicates rarity‐based vulnerability estimates are slightly affected by the way a certain rarity dimension is measured. Vulnerability was correlated with range trends; species with the highest vulnerability had the strongest range contraction. However, a large number of common species also underwent range contraction in the last 50 years, and there was no clear relation between range contraction and their ecology. This indicates that in general human‐induced environmental changes affected species irrespective of their assumed vulnerability and that focusing only on rare species may severely bias perceptions of the extent of species decline. Relaciones entre Rareza de Especies, Vulnerabilidad y Contracción de Distribución Geográfica para un Grupo de Escarabajos en una Región Densamente Poblada en el Hotspot de Biodiversidad del Mediterráneo  相似文献   

18.
Conservation resources are limited, necessitating prioritization of species and locations for action. Most prioritization approaches are based solely on biologically relevant characteristics of taxa or areas and ignore geopolitical realities. Doing so risks a poor return on conservation investment due to nonbiological factors, such as economic or political instability. We considered felids, a taxon which attracts intense conservation attention, to demonstrate a new approach that incorporates both intrinsic species traits and geopolitical characteristics of countries. We developed conservation priority scores for wild felids based on their International Union for Conservation of Nature status, body mass, habitat, range within protected area, evolutionary distinctiveness, and conservation umbrella potential. We used published data on governance, economics and welfare, human population pressures, and conservation policy to assign conservation‐likelihood scores to 142 felid‐hosting countries. We identified 71 countries as high priorities (above median) for felid conservation. These countries collectively encompassed all 36 felid species and supported an average of 96% of each species’ range. Of these countries, 60.6% had below‐average conservation‐likelihood scores, which indicated these countries are relatively risky conservation investments. Governance was the most common factor limiting conservation likelihood. It was the major contributor to below‐median likelihood scores for 62.5% of the 32 felid species occurring in lower‐likelihood countries. Governance was followed by economics for which scores were below median for 25% of these species. An average of 58% of species’ ranges occurred in 43 higher‐priority lower‐likelihood countries. Human population pressure was second to governance as a limiting factor when accounting for percentage of species’ ranges in each country. As conservation likelihood decreases, it will be increasingly important to identify relevant geopolitical limitations and tailor conservation strategies accordingly. Our analysis provides an objective framework for biodiversity conservation action planning. Our results highlight not only which species most urgently require conservation action and which countries should be prioritized for such action, but also the diverse constraints which must be overcome to maximize long‐term success.  相似文献   

19.
Abstract:  The World Conservation Union (IUCN) Red List Index (RLI) is used to measure global trends in the status of biodiversity. We examined how the index might be used to measure the trend in the status of indigenous breeding birds in British Columbia between 1992 and 2006. We followed the RLI method described by Butchart et al. (2004, 2007) as closely as possible . Because IUCN Red List assessments at the regional level are not available in British Columbia, we used NatureServe S (subnational) ranking data. We calculated three index trend lines. The first two of these allowed us to compare an index based on our original data to one based on data that had been retrospectively corrected; the latter produced a smooth, flat line. A third trend line, based on the corrected data but excluding species new to province since 1947, produced a gently sloping downward trend. Ongoing immigration of bird species in and out of British Columbia added to the complexity of interpreting our regional RLI-type index, especially because our S-rank data did not incorporate transboundary "rescue" effects. Because the RLI is scaled so that the maximum value is based on a state in which all species are simultaneously ranked as least concern, it may exaggerate the highest potential status of intrinsically vulnerable species. A simpler, more intuitive graphic allows reporting that is less dependent on context. We believe the RLI approach holds useful innovation for an indicator of change in biodiversity within jurisdictional boundaries.  相似文献   

20.
Abstract:  Priority setting is an essential component of biodiversity conservation. Existing methods to identify priority areas for conservation have focused almost entirely on biological factors. We suggest a new relative ranking method for identifying priority conservation areas that integrates both biological and social aspects. It is based on the following criteria: the habitat's status, human population pressure, human efforts to protect habitat, and number of endemic plant and vertebrate species. We used this method to rank 25 hotspots, 17 megadiverse countries, and the hotspots within each megadiverse country. We used consistent, comprehensive, georeferenced, and multiband data sets and analytical remote sensing and geographic information system tools to quantify habitat status, human population pressure, and protection status. The ranking suggests that the Philippines, Atlantic Forest, Mediterranean Basin, Caribbean Islands, Caucasus, and Indo-Burma are the hottest hotspots and that China, the Philippines, and India are the hottest megadiverse countries. The great variation in terms of habitat, protected areas, and population pressure among the hotspots, the megadiverse countries, and the hotspots within the same country suggests the need for hotspot- and country-specific conservation policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号