首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The understanding of population structure and gene flow of marine pelagic species is paramount to monitoring, management and conservation studies. Such studies are often hampered by the potentially high dispersal behavior of the species, the lack of obvious geographical barriers in the marine environment and the scarce sample availability. Short-beaked common dolphins (Delphinus delphis) are widespread in coastal and open-ocean habitats of the North Atlantic Ocean, nevertheless population structure and migratory patterns are poorly understood. Furthermore, concern has been raised about the status of the species because large numbers of dolphins have been taken incidentally in several fisheries throughout the North Atlantic in the past decades. In the present study, a large number of individual samples were obtained from seasonal and spatial aggregations of common dolphins from western (wNA) and eastern North Atlantic (eNA) regions, mostly using opportunistic sampling (i.e. from incidental entanglement in fishing gear or beach-cast carcasses). Genetic variability was investigated using nuclear (14 microsatellite loci) and mitochondrial (360 bp of the control region) genetic markers. Levels of genetic diversity were relatively high in all sampled areas and no evidence of recent reduction of effective population size (i.e. bottleneck) was detected at the nuclear loci. Significant population structure was detected between the two main regions (wNA and eNA) where it appeared to be more pronounced at mitochondrial (F ST = 0.018, P < 0.001) than nuclear markers (F ST = 0.005, P < 0.05), indicating the presence of at least two genetically distinct populations of common dolphins in the North Atlantic Ocean. In contrast, no significant genetic structure was detected between temporal aggregations of dolphins from within the same region, suggesting possible seasonal movement patterns at a regional scale. The observed levels of genetic differentiation between classes of markers are discussed here as a possible consequence of migratory patterns or recent population subdivision. An erratum to this article can be found at  相似文献   

2.
Several cetacean species exhibit fine-scale population structure despite their high dispersal capacities and the apparent continuity of the marine environment. In dolphins, most studies have focused on coastal areas and continental margins, and they revealed differentiated populations within relatively small geographic areas, sometimes in conjunction with a specialisation for different habitats (ecotypes). We analysed the population genetic structure of short-beaked common dolphins (Delphinus delphis) and Atlantic spotted dolphins (Stenella frontalis) in the Azores and Madeira, the two most isolated archipelagos of the North Atlantic. The archipelago of the Azores is divided into three groups of islands and stands 900 km away from Madeira. It is not known whether individuals migrate between groups of islands and archipelagos, nor whether distinct ecotypes are present. These questions were investigated by genetic analyses of 343 biopsy samples collected on free-ranging dolphins. The analyses consisted in sequencing part of the mitochondrial hyper-variable region, screening up to 14 microsatellite loci, and molecular sexing. Results did not unravel any population structure at the scale of the study area. Lack of differentiation matches expectations for spotted dolphins, which are transient in both archipelagos, but not for common dolphins, which are present year-round in the Azores and potentially resident. Absence of genetic structure over hundreds and even thousands of kilometres implies the existence of gene flow over much larger distances than usually documented in small delphinids, which could be achieved through individual movements. This finding indicates that population structure in oceanic habitat differs from that observed in coastal habitat.  相似文献   

3.
Genetic surveys of reef fishes have revealed high population connectivity within ocean basins, consistent with the assumption that pelagic larvae disperse long distances by oceanic currents. However, several recent studies have demonstrated that larval retention and self-recruitment may be higher than previously expected. To assess connectivity in tropical reef fishes, we contribute range-wide mtDNA surveys of two Atlantic squirrelfishes (family Holocentridae). The blackbar soldierfish, Myripristis jacobus, has a pelagic juvenile phase of about 58 days, compared to about 71 days (~22% longer) in the longjaw squirrelfish, Holocentrus ascensionis. If the pelagic duration is guiding dispersal ability, M. jacobus should have greater population genetic structure than H. ascensionis. In comparisons of mtDNA cytochrome b sequences from 69 M. jacobus (744 bp) and 101 H. ascensionis (769 bp), both species exhibited a large number of closely related haplotypes (h=0.781 and 0.974, π=0.003 and 0.006, respectively), indicating late Pleistocene coalescence of mtDNA lineages. Contrary to the prediction based on pelagic duration, M. jacobus has much less population structure (φST=0.008, P=0.228) than H. ascensionisST=0.091, P<0.001). Significant population partitions in H. ascensionis were observed between eastern, central and western Atlantic, and between Brazil and the Caribbean in the western Atlantic. These results, in combination with the findings from 13 codistributed species, indicate that pelagic larval duration is a poor predictor of population genetic structure in Atlantic reef fishes. A key to understanding this disparity may be the evolutionary depth among corresponding taxonomic groups of “reef fishes”, which extends back to the mid-Cretaceous and encompasses enormous diversity in ecology and life history. We should not expect a simple relationship between pelagic larval duration and genetic connectivity, among lineages that diverged 50–100 million years ago.  相似文献   

4.
The genetic structure of Patagonian toothfish populations in the Atlantic and western Indian Ocean Sectors of the Southern Ocean (SO) were analysed using partial sequences of the mitochondrial 12S rRNA gene and seven microsatellite loci. Both haplotype frequency data (F ST>0.906, P<0.01) and microsatellite genotype frequency data (F ST=0.0141–0.0338, P<0.05) indicated that populations of toothfish from around the Falkland Islands were genetically distinct from those at South Georgia (eastern Atlantic Sector SO), around Bouvet Island (western Atlantic Sector SO) and the Ob Seamount (western Indian Ocean Sector of the SO). Genetic differentiation between these populations is thought to result from hydrographic isolation, as the sites are separated by two, full-depth, ocean-fronts and topographic isolation, as samples are separated by deep water. The South Georgia, Bouvet and Ob Seamount samples were characterised by an identical haplotype. However, microsatellite genotype frequencies showed genetic differentiation between South Georgia samples and those obtained from around Bouvet Island and nearby seamounts (F ST=0.0037, P<0.05). These areas are separated by large geographic distance and water in excess of 3,000 m deep, below the distributional range of toothfish (<2,200 m). No significant genetic differentiation was detected between samples around Bouvet Island and the Ob Seamount although comparisons may have been influenced by low sample size. These localities are linked by topographic features, including both ridges and seamounts, that may act as oceanic “stepping stones” for migration between these populations. As for other species of deep-sea fish, Patagonian toothfish populations are genetically structured at the regional and sub-regional scales.  相似文献   

5.
6.
Short-beaked common dolphins (Delphinus delphis) and Atlantic spotted dolphins (Stenella frontalis) are the two most abundant cetacean species in the oceanic waters of Madeira and the Azores. They are of similar size, occur in similar habitats and are regularly observed in mixed-species groups to forage together. Genetic analyses suggested that, within each species, dolphins ranging around both archipelagos belong to the same panmictic population. We tested the hypotheses that (1) within each species, individuals from the two archipelagos belong to a single ecological stock; (2) between species, common and spotted dolphins have distinct trophic niches; using fatty acid (FA) and stable isotope (SI) analyses. Fatty acids and stable isotopes were analysed from 86 blubber and 150 skin samples of free-ranging dolphins, respectively. Sex-related differences were not significant, except for common dolphin FA profiles. In S. frontalis, FA and SI differences between archipelagos suggested that individuals belonged to different ecological stocks, despite the existence of gene flow between the two archipelagos. In D. delphis, differences were more pronounced, but it was not possible to distinguish between stock structure and a seasonal effect, due to differential sampling periods in the Azores and Madeira. Inter-specific comparisons were restricted to the Azores where all samples were collected during summer. Differences in FA proportions, noticeably for FA of dietary origin, as well as in nitrogen SI profiles, confirmed that both species feed on distinct resources. This study emphasizes the need for an integrated approach including both genetic and biochemical analyses for stock assessment, especially in wide-ranging marine top predators.  相似文献   

7.
The nurse shark, Ginglymostoma cirratum, inhabits shallow, tropical, and subtropical waters in the Atlantic and the eastern Pacific. Unlike many other species of sharks, nurse sharks are remarkably sedentary. We assayed the mitochondrial control region and eight microsatellite loci from individuals collected primarily in the western Atlantic to estimate the degree of population subdivision. Two individuals from the eastern Atlantic and one from the Pacific coast of Panama also were genotyped. Overall, the mtDNA haplotype (h = 48 ± 5%) and nucleotide (π = 0.08 ± 0.06%) diversities were low. The microsatellite data mirror the mitochondrial results with the average number of alleles ([`(N)]A \bar{N}_{A}  = 9) and observed heterozygosity ([`(H)]O \bar{H}_{O}  = 0.58) both low. The low levels of diversity seen in both the mtDNA and the microsatellite may be due to historical sea level fluctuations and concomitant loss of shallow water habitat. Eight of the 10 pair-wise western Atlantic F ST estimates for mtDNA indicated significant genetic subdivision. Pair-wise F ST values for the microsatellite loci indicated a similar pattern as the mtDNA. The western Atlantic population of nurse sharks is genetically subdivided with the strongest separation seen between the offshore islands and mainland Brazil, likely due to deep water acting as a barrier to dispersal. The eastern and western Atlantic populations were closely related. The eastern Pacific individual is quite different from Atlantic individuals and may be a cryptic, sister species.  相似文献   

8.
The red porgy, Pagrus pagrus (L.), is a protogynous sparid associated with reefs and hard bottom habitat throughout the warm-temperate Atlantic Ocean. In this study, the degree of geographic population differentiation in Atlantic populations was examined with microsatellite and mitochondrial DNA markers (mtDNA). Six microsatellite loci were amplified and scored in 690 individuals from the eastern North Atlantic (Crete, Madeira, and Azores), western North Atlantic (North Carolina to Florida, and the eastern Gulf of Mexico), and Brazil. At two loci, fixed allelic differences were found among the three major geographic areas, while frequency differences were observed at three other loci. The DNA of 371 individuals was amplified at the mtDNA control region, and 526 bp were sequenced. Tamura–Nei’s D was used as a measure of nucleotide diversity and divergence: diversity averaged 0.011 within samples, while the corrected divergence averaged 0 between samples within the same area and 0.061 between samples from different areas. Transversion haplotype minimum spanning networks, nucleotide divergence, and F ST values all show that the western Atlantic samples were more closely related to each other than any was to samples from the eastern North Atlantic. Within the western North Atlantic, no significant population differentiation was observed, and within the eastern North Atlantic, only the Azores sample showed detectable differences from Crete and Madeira. These data indicate general homogeneity within large areas, and deep divisions between these areas. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
The tarpon (Megalops atlanticus) is a highly valued game fish and occasional food fish in the eastern and western Atlantic Ocean. Tarpon have a high capacity for dispersal, but some regional biological differences have been reported. In this study we used two molecular genetic techniques—protein electrophoresis of nuclear DNA loci, and restriction fragment length polymorphism analysis of the mitochondrial DNA (mtDNA)—to assess this species population genetic structure in the eastern (coastal waters off Gabon and Sierra Leone, Africa) and western (coastal waters off Florida, Caribbean Sea) Atlantic Ocean north of the equator. Genetic differentiation was observed between tarpon from Africa and tarpon from the western Atlantic Ocean. A unique allele and haplotype, significant differences in allozyme allele and mtDNA haplotype frequencies between the African and western Atlantic samples, and significant FST analyses suggest that levels of gene flow between tarpon from these two regions is low. Among the western Atlantic Ocean collections, genetic diversity values and allele and haplotype frequencies were similar. AMOVA analyses also showed a degree of genetic relatedness among most of the western Atlantic Ocean collections: however, some significant population structuring was detected in the allozyme data. A regional jackknifed FST analysis indicated the distinction of the Costa Rica population from the other western Atlantic populations and, in pairwise analyses, FST values tended to be higher (i.e., genetic relatedness was lower) when the Costa Rican sample was paired with any of the other western Atlantic samples. These data suggest that Costa Rican tarpon could be partially isolated from other western Atlantic tarpon populations. Ultimately, international cooperation will be essential in the management of this species in both the eastern and western Atlantic Ocean.Communicated by P.W. Sammarco, Chauvin  相似文献   

10.
Due to indications that misidentification (largely confusion among dolphins of the genera Delphinus and Stenella) in the past had led to erroneous assumptions of distribution of the two species of common dolphins (Delphinus delphis and D. capensis) in the western Atlantic Ocean, we conducted a critical re-examination of records of the genus Delphinus from this region. We compiled 460 ‘plottable’ records, required support for confirmation of genus and species identifications, and found many records lacking (and some clearly misidentified). When we plotted only the valid records (n = 364), we found evidence of populations in only three areas, and apparent absence throughout much of the tropical/subtropical regions. Off the east coast of the US and Canada, D. delphis is found from the Georgia/South Carolina border (32°N) north to about 47–50°N off Newfoundland. Since the 1960s, they have apparently been absent from Florida waters. There is no evidence that dolphins of the genus occur in the Gulf of Mexico. Reports of common dolphins from most of the Caribbean Basin are also rejected, and the only place in that region where they are confirmed to occur is off central-eastern Venezuela (a coastal D. capensis population). Off eastern South America, common dolphins appear to be restricted to south of 20°S. There is a coastal long-beaked population found in the South Brazil Bight, and one or more short-beaked populations south and offshore of this (ranging south to at least northern Argentina). The results are very different from commonly-accepted patterns of distribution for the genus in the Atlantic. Most areas of distribution coincide with moderate to strong upwelling and common dolphins appear to avoid warm, tropical waters. This study shows that great care must be taken in identification of similar-appearing long-beaked delphinids, and that uncritical acceptance of records at face value can lead to incorrect assumptions about the ranges of the species involved.  相似文献   

11.
Genetic population structure of the blacktip shark, Carcharhinus limbatus, a commercially and recreationally important species in the southeast U.S. shark fishery, was investigated using mitochondrial DNA control region sequences. Neonate blacktip sharks were sampled from three nurseries, Pine Island Sound, Terra Ceia Bay, and Yankeetown, along the Gulf of Mexico coast of Florida (Gulf) and one nursery, Bulls Bay, on the Atlantic Ocean coast of South Carolina (Atlantic). Sequencing of the complete mitochondrial control region of 169 neonates revealed 10 polymorphic sites and 13 haplotypes. Overall haplotype diversity and percent nucleotide diversity were 0.710 and 0.106%, respectively. Haplotype frequencies were compared among nurseries to determine if the high mobility and seasonal migrations of adult blacktip sharks have maintained genetic homogeneity among nurseries in the Atlantic and Gulf. Chi-square analysis and AMOVA did not detect significant structuring of haplotypes among the three Gulf nurseries, P(2)=0.294, ST=–0.005 to –0.002. All pairwise AMOVA between Gulf nurseries and the Atlantic nursery detected significant partitioning of haplotypes between the Gulf and Atlantic (ST=0.087–0.129, P<0.008), as did comparison between grouped Florida Gulf nurseries and the Atlantic, CT=0.090, P<0.001. Based upon the dispersal abilities and seasonal migrations of blacktip sharks, these results support the presence of philopatry for nursery areas among female blacktip sharks. Our data also support the treatment of Atlantic and Gulf blacktip shark nursery areas as separate management units.Communicated by P.W.Sammarco, Chauvin  相似文献   

12.
The ocean quahog, Arctica islandica (Linnaeus, 1767), is a commercially important bivalve found on continental shelves throughout much of the North Atlantic. To assess genetic subdivision in this species, we sequenced 385 nucleotides of the mitochondrial cytochrome b (cyt b) gene from 83 specimens collected from 12 localities between September 1998 and July 1999 (based on preliminary data, the Internal Transcribed Spacers, ITS, of the nuclear ribosomal repeat were not useful). The cyt b data delimited 11 haplotypes with 0.26 to 8.1% nucleotide difference (coded by 36 variable nucleotide positions) among them. Only three haplotypes were detected in 39 specimens collected along the USA coastline, compared to five haplotypes from nine Icelandic individuals. The western Atlantic populations ranging from Penobscot Bay (Maine, USA) to southern Virginia showed relatively low diversity and appeared genetically similar in that region. Based on the presence of shared haplotypes, AMOVA analyses, and phylogenetic reconstructions, Icelandic populations appear to be more genetically similar to western Atlantic populations than eastern Atlantic populations. Specimens from the Faroe Islands (n=4) show mixed affinities. These data are consistent with the hypothesis that a warm Holocene climatic optimum (ca. 7,500 years BP), and not glacial refugia, shaped the present-day genetic structure in A. islandica. Received: 18 January 2000 / Accepted: 26 June 2000  相似文献   

13.
Stock heterogeneity was investigated in albacore tuna (Thunnus alalunga, Bonnaterre 1788), a commercially important species in the North Atlantic Ocean and Mediterranean Sea. Twelve polymorphic microsatellite loci were examined in 581 albacore tuna from nine locations, four in the north-east Atlantic Ocean (NEA), three in the Mediterranean Sea (MED) and two in the south-western Pacific Ocean (SWP). Maximum numbers of alleles per locus ranged from 9 to 38 (sample mean, 5.2–22.6 per locus; overall mean, 14.2 ± 0.47 SE), and observed heterozygosities per locus ranged from 0.44 to 1.00 (overall mean: 0.79 ± 0.19 SE). Significant deficits of heterozygotes were observed in 20% of tests. Multilocus F ST values were observed ranging from 0.00 to Θ = 0.036 and Θ′ = 0.253, with a mean of Θ = 0.013 and Θ′ = 0.079. Pairwise F ST values showed that the SWP, NEA and MED stocks were significantly distinct from one another, thus corroborating findings in previous studies based on mitochondrial DNA, nuclear DNA (other than microsatellites) and allozyme analyses. Heterogeneity was observed for the first time between samples within the Mediterranean Sea. GENELAND indicated the potential presence of three populations across the NEA and two separate populations in the Mediterranean Sea. Observed genetic structure may be related to migration patterns and timing of movements of subpopulations to the feeding grounds in either summer or autumn. We suggest that a more intensive survey be conducted throughout the entire fishing season to ratify or refute the currently accepted genetic homogeneity within the NEA albacore stock.  相似文献   

14.
Infectious disease surveillance has become an international top priority due to the perceived risk of bioterrorism. This is driving the improvement of real-time geo-spatial surveillance systems for monitoring disease indicators, which is expected to have many benefits beyond detecting a bioterror event. West Nile Virus surveillance in New York State (USA) is highlighted as a working system that uses dead American Crows (Corvus brachyrhynchos) to prospectively indicate viral activity prior to human onset. A cross-disciplinary review is then presented to argue that this system, and infectious disease surveillance in general, can be improved by complementing spatial cluster detection of an outcome variable with predictive “risk mapping” that incorporates spatiotemporal data on the environment, climate and human population through the flexible class of generalized linear mixed models.
Glen D. JohnsonEmail:
  相似文献   

15.
Vermilion snapper (Rhomboplites aurorubens) were collected from four sites off the Atlantic coast of the USA and one site in the Gulf of Mexico to evaluate effective population size and genetic stock structure. Previous studies had suggested geographic variation in the ratio of males to females, so this population characteristic was explored in conjunction with the genetic analysis. Sex ratio varied greatly among the five sample sites; males comprised 57% of samples in the Gulf of Mexico, while within the South Atlantic Bight they comprised between 36% (Morehead City, North Carolina) and 53% (Carolina Beach, North Carolina) of samples. No clear geographic trends in the sex ratio emerged; instead, it was found to vary with fish length, the percentage of males decreasing with increasing size. Allelic variation assessed at seven dinucleotide microsatellite loci was large; gene diversities ranged from 0.43 to 0.95 and allelic counts from 7 to 39. Estimates of the effective population size ranged from 24 500 (based on the infinite-alleles model) to 150 500 (based on the stepwise-mutation model). There was evidence for excess homozygosity within samples: estimates of F IS (the correlation of alleles within individuals) ranged from 0.01 to 0.03 among the seven loci, and three estimates were significantly greater than zero. Differentiation among localities was very weak, as estimates of F ST (the correlation of alleles within populations) were on the order of 0.001 to 0.002 and genetic distance estimates between localities were not related to geographic distances. This suggested that vermilion snapper in the South Atlantic Bight (Cape Hatteras, North Carolina to Cape Canaveral, Florida) and Gulf of Mexico are likely to consist of one genetic stock. Despite the overall homogeneity, there were indications of a temporally dynamic local structure that would bear further examination. Received: 6 July 1998 / Accepted: 9 February 1999  相似文献   

16.
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups. ‘Resident’-type (fish-eating) killer whales were more abundant than the ‘transient’-type (mammal-eating). Abundance estimates of resident killer whales (991 [95% CI = 379–2,585] [IGS] and 1,587 [95% CI = 608–4,140] [PEGS]), were at least four times greater than those of the transient killer whales (200 [95% CI = 81–488] [IGS] and 251 [95% CI = 97–644] whales [PEGS]). The IGS estimate of abundance is preferred for resident killer whales because the estimate based on PEGS data may show an upward bias. The PEGS estimate of abundance is likely more accurate for transients. Residents were most abundant near Kodiak Island in the northern Gulf of Alaska, around Umnak and Unalaska Islands in the eastern Aleutians, and in Seguam Pass in the central Aleutians. This ecotype was not observed between 156 and 164°W, south of the Alaska Peninsula. In contrast, transient killer whale sightings were found at higher densities south of the Alaska Peninsula between the Shumagin Islands and the eastern Aleutians. Only two sightings of ‘offshore’-type killer whales were recorded during the surveys, one northeast of Unalaska Island and the other south of Kodiak Island. These are the first estimates of abundance of killer whale ecotypes in the Aleutian Islands and Alaska Peninsula area and provide a baseline for quantifying the role of these top predators in their ecosystem. Electronic Supplementary Material  Supplementary material is available in the online version of this article at and is accessible for authorized users.
Alexandre N. ZerbiniEmail:
  相似文献   

17.
Reef habitats of the tropical Atlantic are separated by river outflows and oceanic expanses that may preclude larval dispersal or other population connections in shorefishes. To examine the impact of these habitat discontinuities on the intraspecific phylogeography of reef-associated species we conducted range-wide surveys of two amphi-Atlantic reef fishes that have dispersive pelagic larval stages. Based on 593 bp of mtDNA cytochrome b from the rock hind Epinephelus adscensionis and 682 bp from the greater soapfish Rypticus saponaceous (n=109 and 86, respectively), we found evidence of relatively ancient separations as well as recent surmounting of biogeographic barriers by dispersal or colonization. Rock hind showed slight but significant population genetic differentiation across much of the tropical Atlantic Ocean (ST=0.056), but deep divergence between the southeastern United States and seven other localities from the Bahamas to the south, central and east Atlantic (mean pairwise d=0.040, overall ST=0.867). The geographic distribution of the two rock hind lineages is highly unusual in genetic studies of Caribbean Sea reef fishes, because those lineages are separated by less than 250 km of open water within a major biogeographic region. In contrast, highly significant population genetic structure was observed among greater soapfish from the SW Caribbean, Brazil, and mid-Atlantic ridge (ST=0.372), with a deep evolutionary separation distinguishing putative R. saponaceous from West Africa (mean pairwise d=0.044, overall ST=0.929). Both species show evidence for a potential connection between the Caribbean and Brazilian provinces. While widespread haplotype sharing in rock hind indicates that larvae of this species cross oceanic expanses of as much as 2000 km, such a situation is difficult to reconcile with the isolation of populations in Florida and the Bahamas separated by only 250 km. These findings indicate that populations of some species in disjunct biogeographic zones may be isolated for long periods, perhaps sufficient for allopatric speciation, but rare gene flow between zones may preclude such evolutionary divergence in other species.Communicated by P.W. Sammarco, Chauvin  相似文献   

18.
During submersible surveys along the continental slope (summers of 1991 and 1992, 184–847 m) between False Cape, Virginia, and Cape Hatteras, North Carolina, USA, we observed the aegid isopod, Syscenus infelix Harger, attached to the macrourid Nezumia bairdii (Goode and Bean). This is the first report of S. infelix attached to fishes in the western North Atlantic. The association of this blind isopod with its host appears species specific. The large, conspicuous isopod always attached to a fish in the same location, the dorsal midline, immediately behind the first dorsal fin. Attachment appears to be long term, with the isopod forming a characteristic scar consisting of a distinct discolored oval depression with seven small, dark impressions that coalesce as the fish grows. Only one S. infelix was found on each host fish. The isopod occurred on 23.7% of N. bairdii observed from submersible on the middle continental slope off Virginia and North Carolina, compared with 16.6% of 1236 museum specimens of the same species (based on inspection for scars) collected at latitudes 26°–64°N. Prevalence of the fish–isopod association was not correlated with depth or latitude. We also found identical scars on preserved specimens of N. aequalis (2.6% of 660 specimens), N. sclerorhynchus (1.2% of 86 specimens), and N. suilla (14.3% of 7 specimens), mostly from areas outside the range of N. bairdii. No scars were found on museum specimens of N. atlantica (n=27), N. cyrano (n=57), or N. longebarbata (n=7). The low incidence of isopod attachment on these species suggests that N. bairdii is the preferred host. Infestation by the isopod appears to result in erosion of host fish scales and tissue. We propose that S. infelix is an obligate associate of its host fish and should be considered parasitic. Received: 9 June 2000 / Accepted: 21 October 2000  相似文献   

19.
Seabob shrimps of the genus Xiphopenaeus are important fishery resources along the Atlantic and Pacific coasts of Central and South America. The genus was considered to comprise two species: the Atlantic Xiphopenaeus kroyeri (Heller, Sitzungsber Math Naturwiss cl kaiserliche Akad Wiss Wien 45:389–426, 1862), and the Pacific Xiphopenaeus riveti (Bouvier, Bull Mus Hist Nat Paris 13:113–116, 1907). In a recent review, Xiphopenaeus was regarded as a monotypic genus, on the basis that no clear morphological differences could be found between Pacific and Atlantic specimens (Pérez Farfante and Kensley, Mem Mus Nat Hist Nat Paris 175:1–79, 1997). In the present work, nuclear (allozymes), and mitochondrial (Cytochrome Oxidase I) genes were used to demonstrate the validity of X. riveti and reveal the presence of two cryptic species of Xiphopenaeus within X. kroyeri in the Atlantic Ocean. The high levels of molecular divergence among these species contrast with their high morphological resemblance. Interspecific sequence divergences (Kimura 2-parameter distance) varied from 0.106 to 0.151, whereas intraspecific distances ranged from 0 to 0.008 in Xiphopenaeus sp. 1, from 0 to 0.003 in Xiphopenaeus sp. 2, and from 0.002 to 0.005 in X. riveti. In addition, five diagnostic allozyme loci were found between sympatric samples of Xiphopenaeus sp. 1 and 2 along the Brazilian coast. The results suggest that Xiphopenaeus sp. 2 from the Atlantic is more closely related to the Pacific X. riveti than to the Atlantic Xiphopenaeus sp. 1. Furthermore, a high level of genetic structuring (Xiphopenaeus sp. 1: F ST =0.026; P<0.05; Xiphopenaeus sp. 2: F ST =0.055; P<0.01) was found in the Brazilian Xiphopenaeus populations, indicating the presence of different genetic stocks in both Atlantic species. These findings have important commercial implications as they show that the fisheries of the two Atlantic species must be managed separately, and that each one is comprised of different populations.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

20.
Genetic differentiation of the Atlantic swordfish (Xiphias gladius) was investigated by a single nucleotide polymorphism (SNP) at the calmodulin gene (CAM) intron locus. Clearly distinct allele and genotype frequencies were observed between the north (20–41°N) and mid-south (10°N–33°S) Atlantic samples. Much lower frequency of A allele (37.5–57.1%) was observed in the north samples (n = 160 in total) than in the mid-south samples (83.3–92.6%; n=354), and homozygote BB was common in the north samples (23.4–31.3%) but very rare or absent (0–3.9%) in the mid-south samples. Very strong population subdivision was observed between the two groups (F ST = 0.34, P < 0.001), while the allele and genotype frequencies within each ocean basin persisted over time (1990–2002 in the north, and 1994–2002 in the mid-south). Of two samples from the presumed boundary zone, one (n = 18) (14°N, 48°W) presented intermediate frequencies of the A allele (66.7%) and BB homozygote (11.1%), while the other (n = 23) (10–17°N, 28–37°W) shared similar frequencies of the A allele (89.1%) and BB homozygote (4.3%) with those of the mid-south Atlantic samples. These results indicate that the gene flow and individual migration between the north and mid-south Atlantic populations are considerably restricted and that the current management boundary between the north and south Atlantic swordfish stocks of 5°N should be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号