首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
阴离子表面活性剂是环境中分布广泛且具有代表性的一类有机污染物。采用分置式膜生物反应器(MBR)进行去除模拟废水中阴离子表面活性剂(LSS)的实验.结果表明:MBR对阴离子表面活性剂的去除率高于90%。同时考察了阴离子表面活性剂生物降解的影响因素,确定其适宜降解蒂件为:气体流量为0.3m^3/h、活性污泥浓度为6948mg/L。初步探计了降解动力学和降解机理,研究表明对阴离子表面活性剂的去除符合拟一级反应动力学过程,且生物降解对其去除起主要作用。  相似文献   

2.
表面活性剂对苏云金芽孢杆菌J-1降解BDE-209的影响   总被引:5,自引:0,他引:5  
表面活性剂对有机污染物污染的环境有增效修复作用。本文通过考察鼠李糖脂、蔗糖脂肪酸酯和茶皂素对BDE-209的增溶作用、对菌J-1生长的影响及菌J-1对表面活性剂的利用,研究了3种表面活性剂对菌J-1降解BDE-209的影响及机理。结果表明:3种表面活性剂对BDE-209的增溶能力大小为:鼠李糖脂>蔗糖脂肪酸酯>茶皂素。低浓度鼠李糖脂(<100 mg/L )、蔗糖脂肪酸酯(<50 mg/L)和茶皂素(<50mg/L)都能促进J-1对BDE-209的降解,且促进作用随表面活性剂浓度增加而增强,最高分别可将BDE-209降解率提高23.18%,16.47%和12.64%。3种表面活性剂中、高浓度均对J-1降解BDE-209有抑制作用,当鼠李糖脂、蔗糖脂肪酸酯和茶皂素浓度为1000 mg/L时,J-1对BDE-209的降解率分别降低35.32%、16.54%和27.76%。低浓度表面活性剂的促进作用是增溶和协同代谢的综合效应;中等浓度的蔗糖脂肪酸酯(200-700mg/L)和茶皂素(100-200mg/L)的抑制作用是由于底物竞争或(/和)表面活性剂胶束内裹BDE-209阻碍了菌J-1 与其接触所致;而高浓度表面活性剂的抑制作用是由于表面活性剂对菌J-1的毒害所致。  相似文献   

3.
该实验将产表面活性剂Pseudomonas aeruginosa strain NY3菌株以5%接菌量,菲30 mg/L+葡萄糖3 g/L为碳源,初始发酵液p H=9,180 r/min,30℃发酵培养,48 h产的微生物表面活性剂使培养液上清液的表面张力最小为28.51 m N/m。同时,培养液中菲含量随着时间逐渐减少,96 h培养液中的菲为12.54 mg/L,菲的降解转化率为58%,因此,认为该微生物表面活性剂对菲有增溶作用。  相似文献   

4.
从泄漏柴油污染的加油站土壤中筛选出对柴油具有较强降解能力的1株红球菌,研究了阴离子和非离子表面活性剂对菌株的毒性,并探讨了单一的阴离子和非离子表面活性剂及阴离子-非离子混合表面活性剂对茵株降解柴油污染物的影响.主要结论:①高浓度的阴离子型表面活性剂SDS和非离子表面活性剂TW-80,TX-100,都会对红球菌生长造成一定的抑制和毒害作用,3种表面活性剂对菌株的毒性大小顺序为:TW-80>TX-100>SDS;②单一的表面活性剂SDS,TX-100和TW-80,都能有效提高红球菌对柴油的降解率,非离子表面活性剂TW-80强化红球菌降解柴油的能力最强,其次为TX-100,阴离子表面活性剂SDS能力最弱;③阴离子和非离子的混合表面活性剂SDS-TX-100,SDS-TW-80比单一表面活性剂更能有效提高菌株的降解率,按SDS质量浓度为50 mg/L,TX-100质量浓度为10 mg/L,TW-80质量浓度为10 mg/L比例形成的阴离子和非离子的混合表面活性剂SDS-TX-100和SDS-TW-80对红球菌降解柴油效果最佳,降解率分别达到52.4%和54.3%.  相似文献   

5.
SO2诱导驯化城市污水处理厂氧化沟微生物的多样性分析   总被引:2,自引:1,他引:1  
黄兵  张世玲  章江洪  敖勇  施哲 《环境科学》2011,32(7):2132-2137
对城市污水处理厂氧化沟采集的微生物用低浓度SO2诱导驯化6d以上可培养出脱SO2微生物种群,它们之间相互协同,共同行使着对溶于水中的SO2生化降解的生物学功能,对SO2的生化降解速率高达888mg·(L·h)^-1,1.5h水中的SO3^2-的降解效率〉85%.脱硫菌样品经DNA提取及16SrRNA基因片段的聚合酶链反...  相似文献   

6.
钟晨宇  叶杰旭  李若愚  陈胜  孙德智 《环境科学》2012,33(12):4387-4392
为了研究硝酸盐对厌氧生物膜系统同时产甲烷反硝化反应的影响及其机制,拓展生物膜工艺在高氮有机废水中的应用,采用生物膜-污泥厌氧复合反应器和上流式厌氧污泥床培养具备同时产甲烷反硝化反应的功能微生物系统,并以间歇实验方法,对比研究硝酸盐对厌氧生物膜和颗粒污泥的同时产甲烷反硝化性能的影响.结果表明,硝酸盐对生物膜和颗粒污泥系统去除COD和反硝化反应均有影响,但硝酸盐浓度变化对颗粒污泥系统的影响比生物膜系统更大,生物膜表现出更强的降解能力和更高的耐性阈值.随着硝酸盐浓度从75 mg·L-1增加到600 mg·L-1,颗粒污泥对COD的降解速率从273.26mg·(h·g)-1降到0.1 mg·(h·g)-1,而生物膜从95 mg·(h·g)-1降至1.7 mg·(h·g)-1;同时,生物膜和颗粒污泥对硝酸盐的降解速率分别从21.43、22.31 mg·(h·g)-1增加到83.72、61.06 mg·(h·g)-1,随着硝酸盐的降解,生物膜表现出更强的恢复能力,最大值为712.44 mg·(h·g)-1.研究还发现亚硝酸盐积累是影响生物膜和颗粒污泥同时脱氮除碳功能的主要原因,在相同的硝酸盐浓度下,生物膜中亚硝酸盐的最大积累量仅为的颗粒污泥的1/10.因此,生物膜-污泥厌氧复合反应器可以作为高浓度含氮有机废水实现同时产甲烷反硝化工艺反应器一种重要选择.  相似文献   

7.
刘赫 《环境科学与技术》2014,(1):144-147,173
通过确定污水进水水质和活性污泥的性质,对微生物降解动力学进行定量描述,对活性污泥法污水处理系统的数学模型模拟是非常必要的。文章研究了活性污泥法降解含有表面活性剂污水的动力学参数,并对污水的成分进行了定性分析(以COD分数的形式表达)。5种表面活性剂分别为3种阴离子型的和2种非离子型的,每种均与进水混合形成表面活性剂的浓度为50 mg/L的人工配制工业污水。增大污水中表面活性剂的浓度会降低微生物对营养物质的亲和力。在含有表面活性剂的污水中,异养微生物的最高生长比速率(μmax)也维持在较高水平,但是低于不含表面活性剂的情况。含有苯环的表面活性剂最容易抑制活性污泥系统的生物降解能力。  相似文献   

8.
增强多氯联苯(PCBs)的水溶性是强化PCBs微生物降解的主要控制因素之一,本研究选取了PCB5(2,3-CB)和PCB31(2,4',5-CB)作为低氯代PCBs的典型代表,以曲拉通100(TX-100)、吐温80(Tween 80)、鼠李糖脂粗提物(RL crude)3种表面活性剂和β-环糊精( HPCD)联合Burkholderia xenoνorans LB400构建PCBs好氧降解体系,测试了它们对PCB5和PCB31的溶出率及微生物生长的影响.结果表明,TX-100(CMC=194 mg·L-1)、 Tween 80(CMC=13.1 mg·L-1)、 RL crude(CMC=50 mg·L-1)浓度在1~7 CMC 时和 HPCD 浓度在500~1500 mg·L-1时对 PCB5和 PCB31溶出率分别达到54.7%~100%、59.8%~100%;10.5%~40.8%、6.8%~31.6%;10.3%~19.9%、3.3%~11.6%和19.5%~34.2%、4.2%~10.7%. TX-100浓度在1~7 CMC时对B. xenoνorans LB400生长的抑制率达到30.3%~45.8%,而Tween 80浓度在0.1~1 CMC时对其生长的抑制率为10.0%~15.4%; RL crude 本身能作为底物促进 LB400的生长,而 HPCD 对其生长无明显影响. B. xenoνorans LB400对PCB31(5 mg·L-1)的降解效率在添加表面活性剂后有不同程度的提高:TX-100,23.7%~65.5%; Tween 80,14.6%~44.3%;RL crude,9.6%~27.2%;HPCD,15.3%~20.7%;而表面活性剂对PCB5(10 mg·L-1)的降解效率则无明显影响.表面活性剂主要通过增大溶液中PCBs-表面活性剂的胶束浓度来提高LB400对PCBs的降解效率,在水溶液培养体系中当设置TX-100和Tween 80浓度分别在1和7 CMC时,PCB31的降解效率达到100%和81.7%,而此时B. xenoνorans LB400生长的抑制率为30.3%和5.4%.  相似文献   

9.
微生物代谢产生的生物表面活性剂在海洋环境污染的生物处理方面具有较大应用潜力。从青岛近岸海水中分离到一株生物表面活性剂产生菌株S-22,鉴定为球型节杆菌(Arthrobacter globiformis),通过摇瓶实验对其生长和产生生物表面活性剂的培养条件进行优化,最佳培养条件下6 h表面张力可降低至30.5 mN/m。该菌株产生生物表面活性剂的速度快,有利于大规模工业生产。综合薄层层析分析、傅立叶变换红外光谱分析和GC-MS分析,结果表明该生物表面活性剂是一种由海藻糖和两种脂肪酸(十六烷酸和9-双键十八烷酸)组成的海藻糖脂。该海藻糖脂表面活性高,临界胶束浓度为48.5 mg/L,具有良好的乳化能力,且耐盐和耐热能力较强,具有良好的应用前景。  相似文献   

10.
吐温80降解菌的分离及其性能的初步研究   总被引:2,自引:1,他引:2  
从生活污水污染的土壤中分离纯化得到一株高效降解非离子表面活性剂吐温80的菌株,经鉴定为假单胞菌(Pseudomonassp.),其降解吐温80的最适温度和pH值为30℃和6.5。该菌株在吐温80浓度高于5000mg/L情况下仍然可以旺盛生长。72h内可以将5000m g/L吐温80溶液降解98.6%,使其剩余浓度<70mg/L。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号