首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary. The effect of rearing larvae of Trichoplusia ni on individual feeding deterrents or on binary mixtures of deterrents on their subsequent gustatory sensitivity was measured in paired choice leaf disc bioassays. Our working hypothesis was that mixtures of antifeedants (pure allelochemicals) would mitigate decreased feeding deterrent response following prolonged exposure in this generalist herbivore. Neonate larvae were reared on cabbage leaves treated with individual feeding deterrents (digitoxin, thymol, toosendanin or xanthotoxin), or with binary mixtures of these until the third instar. Feeding deterrent responses to each antifeedant or mixture was then determined in a leaf disc choice bioassay. All of the mixtures produced additive deterrence when presented to naïve larvae. Larvae reared on individual antifeedants showed a significantly decreased feeding deterrent response (except to digitoxin), whereas larvae reared on binary mixtures of antifeedants did not show a decreased feeding deterrent response to any of them. Such mixtures were synergistic in terms of their feeding deterrence to experienced larvae. Our experiment supports the hypothesis (Jermy 1986) that mixtures of deterrents can prevent decreased feeding deterrent response following prolonged exposure, and provides one explanation for the multiplicity of chemical defenses found in many plants.  相似文献   

2.
Marine phytoplankton have been shown to use chemical feeding deterrents to reduce or inhibit zooplankton grazing. In order to screen phytoplankton species for feeding deterrent production and to isolate and identify feeding deterrent compounds, a new, rapid, and reliable laboratory bioassay was developed. This bioassay used the laboratory-reared harpacticoid copepod Tigriopus californicus and measured inhibition of feeding by measuring the fecal pellet production rate. The bioassay was capable of detecting deterrent compounds: (1) adsorbed onto ground fish food (a normally palatable food); (2) dissolved in a mixture of seawater and live Thalassiosira pseudonana cells (a species of diatom which had no feeding deterrent activity); and (3) present in live cell cultures. Method (2) was recommended for use in bioassay-guided fractionation (isolation of chemical compounds), as it was reliable, rapid, accurate, and easy to perform with large numbers of samples. The total bioassay time was < 48 h, and data collection required only a microscope. Methanolic cell extracts of several phytoplankton species were screened for feeding deterrent activity. Extracts from the diatom Phaeodactylum tricornutum and the dinoflagellate Gonyaulax grindleyi gave feeding deterrent responses, while extracts from the diatom Thalassiosira pseudonana gave no feeding deterrent responses. Live P. tricornutum cells deterred feeding at densities of 6x105 cells ml-1. This bioassay should provide a valuable tool in screening phytoplankton for feeding deterrent compounds and determining the chemical nature of these compounds.  相似文献   

3.
Summary Hipposideros ruber use CF/FM echolocation calls to detect the wing flutter of their insect prey. Fluttering prey were detected whether the insects were flying or sitting on a surface, and prey in either situation were captured with equal success (approximately 40% of capture attempts). Stationary prey were ignored. The bats did not use visual cues or the sounds of wing flutter to locate their prey. Wing flutter detection suggests that H. ruber exploit the Doppler-shifted information in echoes of their echolocation calls. These bats fed primarily upon moths, usually those of between 10 and 25 mm wingchord, although moths of less than 5 mm and greater than 40 mm wingchord were also attacked and captured. They showed no evidence of selecting moths on the basis of species or other taxonomic distinction, and occasionaly captured other insects.  相似文献   

4.
The influence of 63 dietary allelochemicals (alkaloids, terpenes, glycosides,etc.) on the feeding behaviour of bees (Apis mellifera) was tested in terms of deterrency and attraction. For 39 compounds a deterrent (mostly alkaloids, coumarins and saponins) and for 3 compounds an attractive response (mostly terpenes) was obtained in choice tests, which allowed the calculation of respective ED50-values. Under no-choice conditions, 17 out of 29 allelochemicals caused mortality at concentrations between 0.003 and 0.6%. Especially toxic were alkaloids, saponins, cardiac glycosides and cyanogenic glycosides. These data show that bees which are confronted with plant allelochemicals in nectar and pollen, are not especially adapted (i.e. insensitive) to the plants' defence chemistry. GLC and GLS-MS data are given on the alkaloid composition of nectar and pollen ofBrugmansia aurea, Atropa belladonna andLupinus polyphyllus.  相似文献   

5.
We analyzed several species of the weevil family Mecininae (Coleoptera, Curculionidae) that all feed on iridoid glycoside (IG) containing plants of the Plantaginaceae to investigate whether the beetles sequester these deterrent substances from their host plants. Within the Mecininae two genera of the tribe Cionini were found to sequester aucubin and catalpol: Cionus Clairville and Schellenberg and Cleopus Dejean. Both analyzed genera of the Mecinini, Mecinus Germar and Rhinusa Stephens, do not sequester IGs although the compounds are present in their food plants. They thus represent the first case of specialists on IG plants that have not evolved adaptations to use the compounds. However, in contrast to the Cionini these genera have a hidden lifestyle, so that their need for defence might be lower. Both Cionus and Cleopus, sequester catalpol with a higher efficiency than aucubin. However, in contrast to Cionus species, Cleopus species only sequester catalpol. In species feeding on Scrophularia, the aucubin concentration is higher while in beetles on Verbascum catalpol is usually dominating. This pattern can also be detected in the only species living on both plants, Cionus hortulanus. The ability to sequester IGs must have a single origin at the base of the sister genera Cionus and Cleopus.  相似文献   

6.
Nishida  Ritsuo 《Chemoecology》1994,5(3-4):127-138
Summary A number of aposematic butterfly and moth species sequester toxic substances from their host plants. Some of these insects can detect the toxic compounds during food assessment. Some pipevine swallowtails use aristolochic acids among the host finding cues during oviposition and larval feeding and accumulate the toxins in the body tissues throughout all life stages. Likewise, a danaine butterfly,Idea leuconoe, which sequesters high concentrations of pyrrolizidine alkaloids in the body, lays eggs in response to the specific alkaloid components contained in the apocynad host. Insect species sharing the same poisonous host plants may differ in the degree of sequestration of toxins. Two closely ralated aposematic geometrid moth species,Arichanna gaschkevitchii andA. melanaria, sequester a series of highly toxic diterpenoids (grayanotoxins) in different degrees, while a cryptic geometrid species,Biston robstus, does not sequester the toxins, illustrating the diversity in adaptation mechanisms even within the same subfamily. By contrast, a number of lepidopteran species store the same compounds though feeding upon taxonomically diverse plant species. A bitter cyanoglycoside, sarmentosin, was characterised from several moth species in the Geometridae, Zygaenidae and Yponomeutidae, and from the apollo butterflies,Parnassius spp. (Papilionidae), although each species feeds on different groups of plants.Interspecific similarities and differences in life history and ecology are discussed in relation to variable characteristics of sequestration of plant compounds among these lepidopteran insects.  相似文献   

7.
Summary. While many marine molluscs have been suggested to use aposematic coloration to avoid predation, few studies have tested the ability of marine predators to learn to associate colors with distasteful prey. In field experiments, we tested the ability of two populations of reef fishes to discriminate among red, yellow, and black artificial nudibranch models when one color was paired with a feeding deterrent. We offered fishes (1) the models without any feeding deterrents, (2) the models with a feeding deterrent coated onto one color, and (3) the models without deterrents again. If reef fishes learn to associate colors with noxious prey, we expected the color paired with the feeding deterrent to be eaten less frequently in the final assay than the initial assay. In both populations, fishes formed clear associations between color and feeding deterrence. However, when the experiment was repeated in one population, changing the color paired with the feeding deterrent, fishes did not form an association between color and feeding deterrence. In this case, prior learning may have affected subsequent trials. Our study indicates that common colors of nudibranchs are recognizable by fishes and can be associated with noxious prey. Received 24 September 1998; accepted 18 December 1998.  相似文献   

8.
Summary We investigated the role of the iridoid glycoside, catalpol, as a deterrent to the predator,Camponotus floridanus. Four laboratory colonies of this ant were offered buckeye caterpillars (Junonia coenia: Nymphalidae) raised on diets with and without catalpol. The same colonies were offered sugar-water solutions containing varying concentrations of catalpol, in both no-choice and choice tests. Regardless of diet, buckeye caterpillars appeared to be morphologically protected from predation by the ants, possibly because of their large spines or tough cuticle. However, buckeyes raised on diets with catalpol had high concentrations of catalpol in their hemolymph; extracts of this high-catalpol hemolymph proved to be an effective deterrent to the ants. When starved ants were not given the choice of food items, they were more likely to consume sucrose solutions that contained 5 mg catalpol/ml or 10 mg catalpol/ml than they were to consume solutions with 20 mg catalpol/ml. When they were given a choice of sugar solution or a sugar solution containing catalpol, the ants avoided solutions with catalpol at any of these concentrations. Ant colony responses to catalpol in sucrose solutions varied considerably over time and among colonies.  相似文献   

9.
Summary Differential acceptance of garlic mustard,Alliaria petiolata byPieris rapae L. andP. napi oleracea is explained by their differential sensitivities to oviposition stimulants and deterrents in the plant. Fractions containing the stimulants and deterrents were isolated by solvent partitioning between water and n-butanol and by open-column chromatography followed by HPLC.P. napi oleracea showed no preference when offered a choice ofA. petiolata or cabbage, but was strongly stimulated to oviposit by post-butanol water extracts ofA. petiolata. The most abundant glucosinolate in this extract was identified as sinigrin, which could explain the high degree of stimulatory activity.P. rapae preferred cabbage plants overA. petiolata, and the relatively low stimulatory activity was also associated with the glucosinolate-containing aqueous extract. However, this species was strongly stimulated by a fraction that contained small amounts of glucotropaeolin along with unknown compounds. Deterrents to both species were found in the butanol extract fromA. petiolata, andP. napi oleracea was more sensitive thanP. rapae to these deterrents. Some HPLC fractions from the BuOH extract were strongly deterrent toP. napi oleracea, but were inactive toP. rapae. The ecological significance of these behavioral differences between the twoPieris species is discussed.  相似文献   

10.
Summary Our paper addresses field survivorship of first instar monarch butterfly larvae (Danaus plexippus L., Lep.: Danainae) in relation to the dual cardenolide and latex chemical defenses of the sand hill milkweed plant,Asclepias humistrata (Asclepiadaceae) growing naturally in north central Florida. Survival of first instar larvae in the field was 11.5% in the first experiment (15–20 April 1990), and dropped to 3.4% in the second experiment (20–30 April). About 30% of the larvae were found glued to the leaf surface by the milkweed latex. Predator exclusion of non-flying inverte-brates by applying tanglefoot to the plant stems suggested that the balance of the mortality was due to volant inverte-brates, or to falling and/or moving off the plants. Regression analyses to isolate some of the other variables affecting survivorship indicated that first instar mortality was correlated with (1) increasing cardiac glycoside concentration of the leaves, (2) increasing age of the plants, and (3) the temporal increase in concentration of cardiac glycosides in the leaves. The study also provided confirmatory data of previous studies that wild monarch females tend to oviposit onA. humistrata plants containing intermediate concentrations of cardiac glycosides. Cardiac glycoside concentration in the leaves was not correlated with that in the latex. The concentration of cardenolide in the latex is extremely high, constituting an average of 1.2 and 9.5% of the mass of the wet and dry latex, respectively. The data suggest that an increase in water content of the latex is compensated for by an influx of cardenolide with the result that the cardenolide concentration remains constant in the latex systems of plants that are growing naturally. We also observed first instar larvae taking their first bite of milkweed leaves in the field. In addition to confirming other workers findings that monarch larvae possess elaborate sabotaging behaviour of the milkweed's latex system, we discovered that several larvae on their first bite involuntarily imbided a small globule of latex and instantly became cataleptic. This catalepsis, lasting up to 10 min, may have been in response to the high concentration of cardenolide present in the latex ofA. humistrata, more than 10 times that in the leaves. The results of the present study suggest that more attention should be directed to plant chemical defenses upon initial attack by first instar insect larvae, rather than attempting correlations of plant chemistry with older larvae that have already passed the early instar gauntlet. The first bite of neonate insects may be the most critical moment for coping with the chemical defenses of many plants and may play a much more important role in the evolution of insect herbivory than has previously been recognized.  相似文献   

11.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   

12.
Interindividual use of echolocation calls: Eavesdropping by bats   总被引:4,自引:0,他引:4  
Summary The use of other individual's echolocation calls by little brown bats, Myotis lucifugus, was tested by observing the response of free-flying bats to presentations of recorded echolocation calls and artificial sounds. Bats responded by approaching conspecific calls while searching for food, night roosts, nursery colonies and mating/hibernation sites. Response was low or non-existant to other sounds. While searching for prey, M. lucifugus also responded to the echolocation calls of Eptesicus fuscus, a sympatric species with overlapping diet but distinctly different echolocation calls. Subadults were especially responsive to conspecific calls.All four situations in which the bats responded involve patchily distributed resources at which bats accumulate. Concentrations of echolocation calls thus likely serve as cues regarding the location of resources. Individuals approaching feeding groups, for example, could increase prey detection range by up to 50 times over individuals relying solely on their own echolocation.Although the costs associated with eavesdropping may be negligible for M. lucifugus, for other species, particularly territorial ones, being conspicuous may be a disadvantage and the possibility of being over-heard by other bats may have been one factor involved in the evolution of echolocation call design.  相似文献   

13.
Three isopod species (Crustacea: Isopoda), commonly found in the intertidal and supratidal zones of the North American Pacific coast, were studied with respect to symbiotic microbiota in their midgut glands (hepatopancreas). Ligia pallasii (Oniscidea: Ligiidae) contained high numbers of microbial symbionts in its hepatopancreatic caeca. Numbers of endosymbionts were strongly reduced by ingestion of antibiotics. By contrast, the hepatopancreas of Idotea wosnesenskii (Valvifera: Idoteidae) and Gnorimosphaeroma oregonense (Sphaeromatidea: Sphaeromatidae) did not contain any microbiota. Results of feeding experiments suggest that microbial endosymbionts contribute to digestive processes in L. pallasii, the most terrestrial of the three isopods that we studied. The acquisition of digestion-enhancing endosymbionts may have been an important evolutionary step allowing isopods to colonize terrestrial habitats where relatively indigestible leaf litter is the primary food source. By contrast, the ability to digest phenolic compounds was most developed in one of the more marine species, suggesting that this trait may have evolved independently in isopod species that consume a phenolic-rich diet, whether in marine habitats or on land. Received: 28 August 2000 / Accepted: 8 December 2000  相似文献   

14.
Summary. Leaf disc choice and oviposition bioassays were used to examine the effects of larval experience with a Hoodia gordonii latex on subsequent behaviors. The latex deterred feeding and oviposition by “naïve” cabbage looper (Trichoplusia ni, Noctuidae) larvae and moths with no previous exposure to the material. “Experienced” insects, reared on a diet with the H. gordonii latex (1000 ppm), exhibited lesser feeding deterrence relative to naïve insects. Experienced female moths actually preferred to lay eggs on treated rather than control leaves. There was no observed transfer of behavioral preferences from experienced parents to their offspring. Our results suggest that moths may be acquiring oviposition preferences from larval feeding experience as described by Hopkins’ host selection principal (HHSP) or through chemical legacy.  相似文献   

15.
We studied the role of echolocation and other sensory cues in two small frugivorous New World leaf-nosed bats (Phyllostomidae: Artibeus watsoni and Vampyressa pusilla) feeding on different types of fig fruit. To test which cues the bats need to find these fruit, we conducted behavioral experiments in a flight cage with ripe and similar-sized figs where we selectively excluded vision, olfaction, and echolocation cues from the bats. In another series of experiments, we tested the discrimination abilities of the bats and presented sets of fruits that differed in ripeness (ripe, unripe), size (small, large), and quality (intact(infested with caterpillars). We monitored the bats' foraging and echolocation behavior simultaneously. In flight, both bat species continuously emitted short (<2 ms), multi-harmonic, and steep frequency-modulated (FM) calls of high frequencies, large bandwidth, and very low amplitude. Foraging behavior of bats was composed of two distinct stages: search or orienting flight followed by approach behavior consisting of exploration flights, multiple approaches of a selected fruit, and final acquisition of ripe figs in flight or in a brief landing. Both bat species continuously emitted echolocation calls. Structure and pattern of signals changed predictably when the bats switched from search or orienting calls to approach calls. We did not record a terminal phase before final acquisition of a fruit, as it is typical for aerial insectivorous bats prior to capture. Both bat species selected ripe over unripe fruit and non-infested over infested fruit. Artibeus watsoni preferred larger over smaller fruit. We conclude from our experiments, that the bats used a combination of odor-guided detection together with echolocation for localization in order to find ripe fruit and to discriminate among them.  相似文献   

16.
Summary. Evidence is presented that pyrrolizidine alkaloid acquired by Utetheisa ornatrix (Lepidoptera, Arctiidae) as a larva from Crotalaria foodplants is incorporated in part into the scales of the adult. A single forewing of a male or female moth may contain in the order of 6 to 13 g monocrotaline in its scale cover or about 1 to 2% of the moths systemic monocrotaline content. Based on estimates of the number of scales per forewing, the monocrotaline content of individual scales is calculated to be in the order of 0.1 and 0.2 ng monocrotaline per male and female scale, respectively. This amounts to concentrations of about 1 and 3%, values roughly at a par with the average systemic concentration (0.5-0.6%) previously determined for monocrotaline in Utetheisa. It is argued that the presence of pyrrolizidine alkaloid in the moths scale coating could account for the promptness with which adult Utetheisa are rejected by spiders. It is suggested further that chemical impregnation of scales with substances deterrent to predators may be more widespread among insects than generally assumed.  相似文献   

17.
Summary Peromyscus melanotis is the only one of three mouse species that eats monarch butterflies at their overwintering sites in Mexico. I tested two hypotheses: 1)P. aztecus avoids monarchs because of a bitter taste aversion to cardiac glycosides (CGs) and an inability to reject CG-rich body parts; 2)Reithrodontomys sumichrasti avoids monarchs principally because of a bitter taste aversion to the CGs. None of the species are sensitive to the toxic effects of ingested CGs. Feeding responses of laboratory-reared mice of each species to monarchs with low, medium and high CG concentrations were compared. BothP. aztecus andR. sumichrasti ate significantly fewer of all three types of monarchs thanP. melanotis. ForP. aztecus andR. sumichrasti, the number of monarchs eaten decreased with increasing CG concentration, whereas forP. melanotis, the number remained constant.Peromyscus melanotis andR. sumichrasti developed a feeding technique for rejecting the CG-laden cuticular material, which reduced the bitterness of ingested monarch material. However,R. sumichrasti displayed the technique significantly less often thanP. melanotis; andP. aztecus never developed it. I conclude that high taste sensitivity to CGs and less versatile food handling preventP. aztecus andR. sumichrasti from overcoming the monarch's chemical defenses.  相似文献   

18.
Using the marine harpacticoid copepod Tigriopus californicus, the effects of phytoplankton feeding deterrents and toxins were differentiated and measured. Eight compounds were tested for feeding deterrence and toxicity responses: four apo-fucoxanthinoids (apo-10′-fucoxanthinal, apo-12′-fucoxanthinal, apo-12-fucoxanthinal, and apo-13′-fucoxanthinone) and four well-known phycotoxins (domoic acid, okadaic acid, microcystin-LR, and a mixture of PSP-1 toxins). Since several of these compounds exhibited both feeding deterrence and toxicity, a model was developed to deconvolute the observed toxicity response from the observed feeding deterrence response, and to classify these compounds based on the degree of toxicity and/or feeding deterrence they exhibited towards T. californicus. Microcystin-LR, the PSP-1 toxins, and the four apo-fucoxanthinoids behaved only as feeding deterrents at low concentrations. Okadaic acid exhibited both toxicity and feeding deterrence at low concentrations, with the threshold concentration for feeding deterrence at a lower level than the threshold concentration for toxicity. Domoic acid acted only as a toxin at low concentrations, with all decreases in feeding resulting from the death of the copepod. Received: 4 November 1996 / Accepted: 3 December 1996  相似文献   

19.
Two important issues in the studies of harmful algae include ecological role of the toxic compounds and their fate through the food web. The aims of this study were to determine whether the production of domoic acid is a strategy evolved to avoid predation and the role of copepods in the fate of this toxic compound through the food web. The copepod Acartia clausi was fed with single and mixed cultures of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschia delicatissima. Ingestion rate as a function of diatom abundance was the same for the toxic and non-toxic Pseudo-nitzschia species, indicating no selective feeding behaviour against P. multiseries. The toxins ingested by the copepods did not affect mortality, feeding behaviour, egg production and egg hatching of the copepods. Copepods assimilated the 4.8% of the total domoic acid ingested. Although the amount of toxins daily detoxificated by the copepods was 63.6%, the copepods accumulated domoic acid in their tissues. We conclude that domoic acid is not toxic for copepods and, probably for this reason, this toxin does not act as feeding deterrent for copepods. However, even though the production of domoic acid has apparently not evolved to deter predation, copepods may play an important role on the fate of this toxic compound through the marine food web.  相似文献   

20.
Summary.  Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycuscommonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. David Utterback: Deceased  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号