首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
采用植物油为唯一碳源,设计选择培养基,从饭店下水道污泥中筛选出生物表面活性剂产生菌.结果分离到12株菌,其中一株能使发酵液的表面张力值从68 mN·m-1降低到34.5 mN·m-1,具有开发潜力,被选出作进一步的研究.该菌株经鉴定为犁头霉菌(Absidia orchidis).通过正交试验对犁头霉菌的培养条件进行优化,其优化培养条件为:植物油3.6 g·L-1,KH2PO412.1 g·L-1,Na2HPO45 g·L-1,(NH4)2SO4 1 g·L-1,NaNO32 g·L-1,酵母浸膏0.1 g·L-1,MgSO4·7H2O 0.15 g·L-1,NaCl 5 g·L-1,CaCl2 0.1 g·L-1,EDTA 1 g·L-1,KI 0.83μg·L-1,H3PO4 0.01μg·L-1,CoCl2·6H2O 0.048μg·L-1,MnSO4·H2O 0.312μg·L-1,Na2 MoO4·2H2O 0.048μg·L-1,ZnCl2 0.287μg·L-1,CuSO4·5H2O 0.125μg·L-1,初始pH值8,接种量6%.发酵70h时可获得生物表面活性剂的最大收获量,此时发酵液中生物表面活性剂的相对浓度达402倍.  相似文献   

2.
生物表面活性剂产生菌的筛选及产剂性能研究   总被引:4,自引:0,他引:4  
从长期被汽油污染的土壤中,筛选出了一株表面活性剂产生菌BSZ-07,初步确定其为铜绿假单胞菌。通过正交试验,优化出了BSZ-07的最优产剂条件。BSZ-07在48h内可使发酵液的表面张力降至34.2mN/m,且乳化性能稳定,是一种较优良的生物表面活性剂产生菌。经FTIR分析及元素分析,初步确定其所产表面活性剂为鼠李糖脂。  相似文献   

3.
堆肥过程中产生生物表面活性剂的细菌的筛选   总被引:5,自引:0,他引:5  
从不同温度的堆肥过程中 ( 45℃和 5 5℃ ) ,筛选了产生生物表面活性剂的菌种 ,对产生的生物表面活性剂进行了定性和定量的检验 .实验结果表明 ,Bacillussubtilis是堆肥过程中产生生物表面活性剂的主要菌种之一 ,并验证了其产生的生物表面活性剂为莎梵婷等脂肽类物质 .还对筛选出的优势菌种BacillussubtilisB产剂条件进行了优化 ,强化了它的产剂能力 ,结果表明碳源和氮源对产剂影响较大 ,而Fe2 浓度影响较小 .最后对筛选的菌种及其产生的生物表面活性剂在城市生活垃圾堆肥中的应用作了展望  相似文献   

4.
杨乐 《环境工程》2015,33(6):153-157
以原油为唯一碳源和能源,从新疆克拉玛依油田土壤中筛选出1株能产生物表面活性剂的高效解烃菌XJBM,经形态观察、生理生化特征和Biolog分析,初步鉴定该菌为铜绿假单胞菌(Pseudomonas Aeruginosa)。薄层色谱分析结果表明,XJBM产糖脂类生物表面活性剂,在最适发酵条件下,生物表面活性剂的产量可达2.25 g/L,可将发酵液表面张力从68.20 m N/m降低到32.50 m N/m,乳化指数(E24)达到81.8%。采用单因素试验对影响XJBM降解率的因素进行了研究,得出最适降解条件为p H 7.5,温度30℃,盐浓度5 g/L,接种量10%。在此条件下,菌株对1%石油烃的7d降解率为63.78%。  相似文献   

5.
从农业堆肥样品中提取出4株可将发酵液的表面张力降到40mN/m以下的菌株,对该四株菌的发酵液进行薄层层析(TLC)分析,结果表明其中3株产生的生物表面活性剂可能为脂肽。选取其中一株B2对其所产的生物表面活性物质进行提纯,经过红外光谱(FT-IR)分析,证明该产物为一环脂肽类似物。该脂肽纯品可将纯水的表面张力由72.3mN/m降到29.9mN/m,CMC值为0.139g/L。实验结果表明,堆肥过程中存在能够产生生物表面活性剂脂肽的菌种,且具有良好的表面活性。  相似文献   

6.
絮凝剂产生菌的筛选及其培养条件优化   总被引:54,自引:2,他引:54  
从活性污泥中筛选到13株产絮凝剂的菌株,经复筛得到1株具有较高絮凝活性的菌,初步鉴定为假单胞菌PseudomonasspGX4-1。该菌产絮凝剂的适宜培养基及培养条件如下:葡萄糖2%,酵母膏0.4%,KH2PO40.4%,pH7.0~9.0,30℃,200r/min,摇床培养2~3d。产生具有高絮凝活性的絮凝剂,对高岭土悬液的絮凝率最高可达92.7%   相似文献   

7.
结合油平板和血平板方法从重金属8处复合污染的土壤样品中筛选出15株能产生物表面活性剂的细菌菌株,其中J119菌株不仅具有良好的产生物表面活性剂的性能,而且能在含铅、镉浓度分别为100~200 mg·L-1、25~100 mg·L-1的平板中生长.同时对J119菌株所产的生物表面活性剂与3种不同类型化学合成表面活性剂活化土壤中铅的效能进行了比较.结果表明,在400 mg·kg-1铅污染土壤中,J119菌株发酵液与化学合成表面活性剂活化土壤中铅的效果相当;与对照相比,在800 mg·kg-1铅污染土壤中,J119菌株发酵液处理使土壤中有效性铅的浓度增加51.1%,而3种化学合成表面活性剂CTAB、SDS、Tween-80处理土壤中有效态铅浓度仅比对照增加28.7%、26.2%和16.0%.另外,J119菌株产生的生物表面活性剂与供试3种化学合成表面活性剂对土壤中铅的活化作用之间存在显著差异.  相似文献   

8.
脂肽类生物表面活性剂产生菌的分离及特性研究   总被引:3,自引:0,他引:3  
曹娟  刘怡辰  张振华  冉炜  沈标 《环境科学学报》2009,29(10):2056-2062
从石油污染土壤中分离筛选获得一株产生生物表面活性剂菌株Y8A,经生理生化实验、16S rDNA序列分析等将其鉴定为芽孢杆菌属(Bacillus sp.).Y8A能在22h内将发酵液的表面张力从68.3mN·m-1降到23.5 mN·m-1.经TLC和傅立叶红外光谱分析, 菌株Y8A产生的生物表面活性剂为脂肽类.20mg·L-1 Ca2+和Fe2+能显著促进其生长和表面活性剂的产生;菌株Y8A在20~30℃,pH 5~12范围内产生表面活性剂的能力较强;LB培养基中添加1%乳糖对生长的影响不大,但能够明显促进Y8A产生生物表面活性剂,而葡萄糖、蔗糖抑制表面活性剂的产生.Y8A能够促进石油降解菌Y1D和F11对石油的降解和功夫菊酯降解菌ZZH对功夫菊酯的生物降解.  相似文献   

9.
生物表面活性剂产生菌的分离鉴定及碳氮源优化   总被引:1,自引:3,他引:1  
采集炼油厂内长期石油污染土壤,经富集培养、蓝色凝胶平板筛选和发酵液表面张力测定等方法,从油泥中筛选出产生物表面活性剂的土著微生物1株,命名为S2,并对其进行生理生化性能测定与产物特性及结构研究.结果表明,该菌鉴定为铜绿假单胞菌Pseudomonas aeruginosa,测定证明其发酵液表面张力稳定,最佳条件下发酵液表面张力可由75mN·m-1降至35mN·m-1,临界束胶浓度(CMC)值为0.25g·L-1,远远低于一般化学表面活性剂的CMC值.发酵液乳化性能优于对照的十二烷基磺酸钠(SDS)及十六烷基三甲基溴化铵(CTAB)等常用的化学表面活性剂.对培养基成分进行优化,选定的最佳碳源为菜油,最佳氮源为硝酸钠,优化培养条件后,产物最大产量达到了4.7g·L-1.  相似文献   

10.
对生物表面活性剂应用于逆胶束体系构建及微水相的条件优化进行了研究.通过与化学表面活性剂(阳离子表面活性剂CTAB、阴离子表面活性剂AOT、非离子表面活性剂TWTween-80)的对比可知,生物表面活性剂鼠李糖脂RL具有高增溶性、低使用量、微环境所需条件温和等优点.通过荧光法测得RL在异辛烷中的临界胶束浓度CMC为0.0...  相似文献   

11.
该研究采用Rashid N p-nPP比色法,通过单因素实验和正交实验对可生物降解聚丁二酸丁二醇酯(PBS)的铜绿假单胞菌产脂肪酶条件进行了优化。研究结果表明:最适培养条件为:温度29℃,摇床转速120 r/min;最佳培养基为:蔗糖0.5%,硫酸铵0.05%,硫酸亚铁0.005%,Tween-60与Span-80按1:1复配乳化剂0.5%,接种量5%,培养基初始pH 9.0。优化后酶活可达33.741 84 U/mL。  相似文献   

12.
根据北方气温的变化特点,用活性污泥生物膜分离、筛选出DG1、DN1、H8、H13菌株,在低温条件下培养絮凝率分别达到87.35%、81.33%、83.79%、78.44%,为今后开展低温污水处理及絮凝机理的研究打下了基础。  相似文献   

13.
从活性污泥中筛选出4株产微生物絮凝剂的菌株,将4株菌进行相互复合培养后,发现1号和2号菌株构建的复合菌群(XL1)所产MBF的絮凝率达到65.5%。优化XLI的培养条件及其所产MBF的絮凝条件后,发现XL1在培养温度为35℃、摇床转速为160rpm、培养基初始pH为8.0、菌液用量为15ml/L、种子液接种量为10ml/L、1%CaCl,溶液用量为40ml/L、高岭土悬浮液pH为4.5、静沉时间为12min等的条件下絮凝率可达到92.5%。16S rDNA测序鉴定1号菌属于沙雷菌属(Serratia),2号菌属于芽孢杆菌菌属(Bacillus)。  相似文献   

14.
对高效絮凝剂产生菌B212进行了培养基成分和培养条件的正交实验研究。实验表明,菌B212产絮凝剂的培养基成分配比(ρ)最佳方案为A4B2C1:蔗糖25g/L、尿素0.5g/L、NaCl 0.5g/L、FeSO4 0.01g/L;最佳培养条件为:培养基初始pH值5、培养温度25℃、转速160r/min。在上述最适培养条件下,培养42h产生的絮凝剂对高岭土悬液的絮凝率可达到92.5%。  相似文献   

15.
化工品的滥用引起的水体磷含量超标严重破坏了水体质量,给环境治理造成重大负担。为提高污水排放前的除磷效率,文章从天然湖泊底泥中筛选出高效除磷菌。采用稀释涂布法分离菌株,透明水解圈初筛、水样除磷率复筛筛选除磷菌,对菌株进行16S rRNA测序及系统发生树分析鉴定,确定该菌株分类。通过单因素试验和正交试验,对该菌株的碳源、氮源、无机盐和初始pH值培养条件进行优化。结果表明,筛选到一株高效除磷菌S21,其与地衣芽孢杆菌(Bacillus licheniformis)亲缘关系较近,且形态特征和生理生化特征基本相符。最佳培养基配比为蔗糖质量分数0.50%、豆饼粉质量分数0.70%、KCl质量分数0.20%,培养基初始pH值为7,发酵时间为18 h,菌体浓度OD600达到3.2。菌株S21被鉴定为地衣芽孢杆菌(Bacillus licheniformis),其在高磷水体中具有较高效率的除磷作用。  相似文献   

16.
近年来国内外微生物絮凝剂的研制开发已经成为热点,本实验对微生物絮凝剂产生菌种筛选、培养条件等进行较为系统地研究与探讨。以活性污泥作为菌种来源,高岭土悬液为絮凝对象,在特定筛选培养基中进行菌种培养增殖,从中筛选出具有絮凝活性菌种,记为J3。在原特定的培养基基础上,对培养基的组成和培养条件进行优化,进行了正交实验设计,选择影响微生物絮凝剂发酵培养基的碳氮源(Ⅰ)、培养温度(Ⅱ)、pH值(Ⅲ)和通气量(Ⅳ)等4因素进行试验,得到了J3菌最佳培养条件。  相似文献   

17.
在实验室条件下对产絮菌H8絮凝条件进行优化,得出所需最佳碳源为葡萄糖;最佳复合氮源为酵母菌+蛋白质;最佳生长环境PH为8;培养温度为10℃,培养时间为20h。最佳絮凝条件:高岭土PH为9.0;助凝剂为Ca2+,加入Ca Cl2的最佳浓度为0.04%,菌液投加量为2%,静沉时间5min。  相似文献   

18.
絮凝剂产生菌的培养条件优化   总被引:3,自引:0,他引:3  
从呼和浩特市污水处理厂筛选分离了1株高效絮凝剂产生菌YS2,通过培养条件优化试验确定了该菌株产絮凝剂的最佳培养条件:碳源为蔗糖,氮源为脲、碳氮比为2.5:1、初始pH值为6.0.培养温度为30℃。絮凝试验表明:该菌株产生的生物絮凝剂对高岭土悬浊液有良好的絮凝效果,絮凝率达到95%。絮凝活性分布试验表明其絮凝活性全部存在于离心沉降物中,而上清液没有絮凝活性。16S rDNA测序鉴定其为克雷伯氏菌G。  相似文献   

19.
一株降解H-酸的细菌的分离筛选   总被引:1,自引:0,他引:1       下载免费PDF全文
通过驯化筛选得到以H-酸为唯一氮源的菌株B6,经鉴定为不粘柄菌属(Asticcacauhs)。该菌利用H-酸的最大浓度为410mg/L,最适pH和温度分别为6.5~7.5和29~30°C。(NH4)2S04能显著抑制该菌对H-酸的降解。推测了H-酸可能的降解过程。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号