首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titanium dioxide (TiO2) is a promising sorbent for As removal. There are two main and physico-chemically distinct polymorphs of TiO2 in nature, namely anatase and rutile. Since the difference of arsenic removal by the two polymorphs of TiO2 is now well known, study on the arsenic removal efficiency and the underlying mechanism is of great significance in developing new remediation strategies for As-polluted waters. Here batch experiments were carried out in combination with instrumental analysis of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) to investigate the effects, influential factors and mechanisms of As removal from aqueous solution by two types of nano TiO2 crystals. The adsorption behavior of anatase and rutile for As(V) and As(III) are well described by Freundlich equations. Anatase had higher As removal efficiency and adsorption capacity than rutile. Solution pH had no influence on the As adsorption of anatase TiO2, whereas the As removal by rutile TiO2 was increased by 7?C18% with pH from 4 to 10. Presence of accompanying anions such as phosphate, silicate, nitrate and sulfate, decreased the As(V) and As(III) removal by both crystals, with phosphate being the most effective. However, removal of As by rutile TiO2 was greatly enhanced in the presence of divalent cations i.e. Ca2+ and Mg2+. Shading of light decreased the removal of As(V) and As(III) of anatase by 15.5% and 17.5%, respectively, while a slight increase of As removal was observed in the case of Rutile TiO2. FT-IR characterization of As(V) or As(III)-treated nano TiO2 crystals indicated that both Ti-O and As-O groups participated in As adsorption. Both FT-IR and XPS analysis demonstrated that As(III) was photooxidated into As(V) when adsorbed by anatase under the light condition. Thus, the effect of crystal types and light condition on As removal should be taken into consideration when nano TiO2 is applied for As removal from water.  相似文献   

2.
The computational method of Large-Eddy Simulations has been used to study the weak, neutrally stable drainage flow within tree canopies. The computational results show that a secondary velocity maximum that resembles a jet is formed within the canopy under the nocturnal flow conditions. This jet-like flow is important in the analysis and measurements of the net ecosystem-atmosphere exchange (NEE) for carbon dioxide (CO2). A uniformly distributed, plane source was placed within the canopy in order to simulate the nocturnal production of CO2. The NEE is calculated as the sum of the integration of the rate of change of the concentration of CO2 over the computational domain, the vertical turbulent flux measured directly by eddy-covariance (EC) method, and the advection terms, which are not taken into account in the EC method. Numerical results of the velocity and concentration fields, within and above the canopy, are presented and their impact on the CO2 transport is investigated in detail. The computational results show that 15–20% of NEE is drained out by the advection process under the canopy. The results also show that the turbulent fluctuations in the lateral direction are also significant and may result in 2–5% CO2 transport.  相似文献   

3.
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid–base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 μatm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid–base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid–base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.  相似文献   

4.
Various analyses of physico-chemical characteristics and batch tests were conducted with the sludge obtained from a full-scale electrolysis facility for treating coal mine drainage in order to find the applicability of sludge as a material for removing Zn(II) in an aqueous phase. The physico-chemical analysis results indicated that coal mine drainage sludge (CMDS) had a high specific surface area and also satisfied the standard of toxicity characteristic leaching procedure (TCLP) because the extracted concentrations of certain toxic elements such as Pb, Cu, As, Hg, Zn, and Ni were much less than their regulatory limits. The results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the CMDS mainly consists of goethite (70%) and calcite (30%) as a weight basis. However, the zeta potential analysis represented that the CMDS had a lower isoelectric point of pH (pHIEP) than that of goethite or calcite. This might have been caused by the complexation of negatively charged anions, especially sulfate, which usually exists with a high concentration in coal mine drainage. The results of Fourier transform infrared (FT-IR) spectrometry analysis revealed that Zn(II) was dominantly removed as a form of precipitation by calcite, such as smithsonite [ZnCO3] or hydrozincite [Zn5(CO3)2(OH)6]. Recycling sludge, originally a waste material, for the removal process of Zn(II), as well as other heavy metals, could be beneficial due to its high and speedy removal capability and low economic costs.  相似文献   

5.
Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m?2·h?1, higher than that of unmodified PVDF membranes (155 L·m?2·h?1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.  相似文献   

6.
Previous methods for measuring CO2 respired in sea water were inaccurate bacause of the high concentration of bound CO2 (carbonates). The method developed here “refluxes” a fixed volume of air through a fixed volume of sea water while simultaneously trapping the respired CO2. Tests were run long enough for the volume of respired CO2 to approximately equal the CO2 bound in the water, thus decreasing the former cause of inaccuracies. The method was tested with 3 species of crabs: Maia aquinado, Carcinus meanas, and Cancer pagurus. Tests lasted overnight (20 h). Six respirometers were used, 5 containing crabs and 1 control for the measurement of bound CO2. The volume of respired CO2 was given by the weight of trapped CO2 (as BaCO3) from the test units (the total of respired CO2 and that in the test water) minus the weight of the control CO2. In both fed and starved crabs, of all 3 species, CO2 output followed the average trend of oxygen consumption, especially after feeding when both CO2 and O2 rose sharply. RQ's (respiratory quotients) could not be determined because O2 was measured intermittently, but the relative ratio of CO2 and O2 was essentially unchanged throughout the experiments. In general, CO2 was less variable than O2 and may be a better indicator of average metabolic rate.  相似文献   

7.
In Life Cycle Assessment (LCA), carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is CO2 flux neutral, i.e. the quantity of CO2 released approximately equals the amount of CO2 sequestered in biomass. This convention is a plausible assumption for fast growing biomass species, but is inappropriate for slower growing biomass, like forests. In this case, the climate impact from biomass combustion can be potentially underestimated if CO2 emissions are ignored, or overestimated, if biogenic CO2 is considered equal to anthropogenic CO2. The estimation of the effective climate impact should take into account how the CO2 fluxes are distributed over time: the emission of CO2 from bioenergy approximately occurs at a single point in time, while the absorption by the new trees is spread over several decades. Our research target is to include this dynamic time dimension in unit-based impact analysis, using a boreal forest stand as case study. The boreal forest growth is modelled with an appropriate function, and is investigated under different forestry regimes (affecting the growth rate and the year of harvest). Specific atmospheric decay functions for biomass-derived CO2 are then elaborated for selected combinations of forest management options. The contribution to global warming is finally quantified using the GWPbio index as climate metric. Results estimates the effects of these practices on the characterization factor used for the global warming potential of CO2 from bioenergy, and point out the key role played by the selected time horizon.  相似文献   

8.
The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.  相似文献   

9.
An extensive series of laboratory experiments was conducted in soil microcosms to study the respiratory response of microorganisms to toxicant amendments within different types of soils. Our analysis of test results demonstrates that coupled biological and environmental factors within soil can be scaled (i.e., commensurably and analogously grouped) by means of two rate constants, one characterizing the diffusion of CO2 in the soil matrix and another the biological production of CO2. The two rate constants were used to classify the impact of metal compounds on diverse soil types and to predict the loss or gain of total respiratory CO2 of amended soils relative to intact soils. This method exemplifies a more general approach, potentially useful for scaling complex physical and biological interactions in environmental assessments.  相似文献   

10.
A. Migné  D. Davoult 《Marine Biology》1997,127(4):699-704
As part of the evaluation of fluxes between the water column and a rich benthic community of the Dover Strait (Eastern English Channel), laboratory measurements of oxygen consumption were carried out on a common ophiurid, Ophiothrix fragilis (Abildgaard), from February 1993 to February 1995. The mean O2-consumption rate was evaluated at 0.31 mg O2 g−1 h−1 (ash-free dry weight). Simultaneous measurements of O2 consumption and CO2 production using the pH-alkalinity method revealed an average respiratory quotient of 0.69 proved suitable for converting oxygen demand to carbon flux. A seasonal trend in respiration data was demonstrated by sinusoidal curves fitted to O2-uptake and CO2-release data as a function of time. The influence on respiration rate of two seasonal parameters (temperature and food availability) is discussed; linear regression indicated a highly significant relationship between O2 consumption (or CO2 production) and temperature; both O2-consumption and CO2-production rates decreased with starvation. The average O:N ratio was estimated at 8.46, close to the theoretical value when proteins constitute the catabolic substrate. The annual carbon respired by the O. fragilis community examined and the estimated annual primary production by phytoplankton indicate that the respiration of the O. fragilis community could supply 35% of phytoplankton carbon requirements. Received: 1 August 1996 / Accepted: 4 September 1996  相似文献   

11.
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems.  相似文献   

12.
The most important question raised from issues of environmental degradation is how economic activities bring about changes that will result in pollution. In the pursuit of tourism economy, contrary to popular interest, the travel and tourism (T&T) industry may cause environmental damages through the emissions of carbon dioxide (CO2) from energy consumption in areas such as transportation and delivery of amenities. Given this major concern, this paper attempts to investigate the linkage between tourism and CO2 emissions in Malaysia between 1981 and 2011. In particular, this study fills the knowledge gap by taking a closer look at the impact of international tourist arrivals on CO2 emissions by sector – electricity and heat generation and transport. Results from the bound test method suggest that there exists a long-run relationship among the variables under consideration when CO2 emissions become the dependent variable. The original result is similarly robust to alternatives, which are CO2 emissions from sectors of electricity and heat generation and transport. Furthermore, the vector error correction model causality analysis indicates a causal relationship between tourism and CO2 emissions by transport and electricity and heat generation. Subsequently, several tourism-related policies are drawn from these findings.  相似文献   

13.
The increasing volume of CO2 embodiment in international trade adds a layer of complexity to environmental policies and has raised arguments on the traditional production based responsibility for CO2 emissions. In order to help understand the quantity of CO2 embodiment in trade and its policy implications, this paper gives observations to recently emerging literatures that quantitatively discuss CO2 embodiment in trade. The analytical approaches share the principle of using input and output modeling but vary dramatically in study boundary and estimation accuracy. The calculations can be roughly categorized into three types: direct quantification of CO2 embodiments in multiregional trade, direct quantification of CO2 embodiment in bilateral trade, and indirect analysis by comparing the scenarios with or without trade. The practical estimations strongly rely on trade partner selection and data availability. An obvious imbalance of net CO2 embodiment in the commodity trade between major developed countries and developing economies as a whole was confirmed by these literatures. Carbon taxes and other possible limitations on CO2 emissions have been addressed. The consistency across the calculations could be enhanced by systematic analyses in more detail to convince the international community to take binding commitments for the reduction of global CO2 emissions.  相似文献   

14.
This work aims to identify the main factors influencing the energy-related carbon dioxide (CO2) emissions from the iron and steel industry in China during the period of 1995–2007. The logarithmic mean divisia index (LMDI) technique was applied with period-wise analysis and time-series analysis. Changes in energyrelated CO2 emissions were decomposed into four factors: emission factor effect, energy structure effect, energy consumption effect, and the steel production effect. The results show that steel production is the major factor responsible for the rise in CO2 emissions during the sampling period; on the other hand the energy consumption is the largest contributor to the decrease in CO2 emissions. To a lesser extent, the emission factor and energy structure effects have both negative and positive contributions to CO2 emissions, respectively. Policy implications are provided regarding the reduction of CO2 emissions from the iron and steel industry in China, such as controlling the overgrowth of steel production, improving energy-saving technologies, and introducing low-carbon energy sources into the iron and steel industry.  相似文献   

15.
In China, safe disposal of hazardous waste is more and more a necessity, urged by rapid economic development. The pyrolysis and combustion characteristics of a residue from producing monopotassium phosphate (monopotassium phosphate residue), considered as a hazardous waste, were studied using a thermogravimetric, coupled with Fourier transform infrared analyzer (TG-FTIR). Both pyrolysis and combustion runs can be subdivided into three stages: drying, thermal decomposition, and final devolatilization. The average weight loss rate during fast thermal decomposition stage in pyrolysis is higher than combustion. Acetic acid, methane, pentane, (acetyl) cyclopropane, 2,4,6-trichlorophenol, CO, and CO2 were distinguished in the pyrolysis process, while CO2 was the dominant combustion product.  相似文献   

16.
Measurements of calcium carbonate contents in soils were performed with FT-IR (Fourier transform infrared) spectroscopy and with the gas volumetric Scheibler method. To the authors’ knowledge it is the first time that carbonate was quantified in soil samples by FT-IR spectroscopy. The carbonate contents of the test soils ranged from 11.3 to 13.1%. Both methods gave similar results, however, results obtained from FT-IR spectra depend on the spectral band used for the carbonate determination. In our investigation we used the bands at 875 and 2506 cm−1. In case of the band at 2506 cm−1 the difference between FT-IR and Scheibler method was a factor of 1.56, in case of 875 cm−1 the respective factor was 1.16. It can be concluded that FT-IR with both bands has a potential to be used in practice as substitution of the Scheibler method. The advantages of the FT-IR method are better reproducibility and the simultaneous characterization of soil organic matter in bulk samples. The disadvantage is its higher cost.  相似文献   

17.
二氧化碳捕集与封存技术(CO_2 capture and storage, CCS)是当前国际上公认的CO_2减排的有效措施,但封存在地下的CO_2仍然因为各种不稳定因素存在泄漏风险,对土壤环境及土壤生态系统产生威胁。选择赤子爱胜蚓为研究对象,通过模拟高浓度CO_2对蚯蚓形态与生理变化的影响,探究CCS泄漏所产生的土壤高浓度CO_2对蚯蚓的毒性效应。研究表明,土壤高浓度CO_2使蚯蚓出现生殖环带肿大、尾部串珠以及断尾等外部形态变化,皮肤和刚毛受到损伤并且表皮发生褶皱等现象;随着CO_2浓度的增加以及暴露时间的延长,蚯蚓的死亡率不断增加,土壤高浓度CO_2对蚯蚓的7 d和14 d半致死浓度分别为26.39%和17.78%;蚯蚓体腔细胞溶酶体中性红保留时间(NRRT)减少。因此,蚯蚓有望作为监测CO_2泄漏的指示生物,NRRT可作为识别CO_2泄漏的敏感指标。  相似文献   

18.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

19.
The purpose of this research is to obtain optimal processing conditions for the adsorption of Remazol Brilliant Violet-5R (RBV-5R) dye onto activated carbon prepared from periwinkle shells (PSAC) by chemical activation with KOH using response surface methodology. Central composite design (CCD) was used to determine the effects of three preparation variables; CO2 activation temperature, CO2 activation time and KOH:char impregnation ratio (IR) on two responses; percentage RBV-5R dye removal and PSAC yield. Based on the CCD, two quadratic models were developed for percentage RBV-5R dye removal and PSAC yield, respectively. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the adsorption of RBV-5R dye onto PSAC were CO2 activation temperature of 811 °C, CO2 activation time of 1.70 h and IR of 3.0, resulting in 81.28% RBV-5R dye removal and 28.18% PSAC yield. PSAC prepared under optimum conditions was mesoporous with a Brunauer–Emmett–Teller surface area of 1894 m2·g?1, total pore volume of 1.107 cm3·g?1 and average pore diameter of 2.32 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.  相似文献   

20.
Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号