首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent of post-dispersal weed seed predation in upland wheat fields converted from paddy fields was quantified in Shizuoka Prefecture, central Japan. We investigated the temporal variability in seed predation of Italian ryegrass (Lolium multiflorum Lam.), a non-native winter annual weed in Japan, during summer after the seed shed in both the field interior areas and boundary strips, and estimated the total seed loss due to predation during the summer. Furthermore, the contribution of invertebrates and vertebrates to seed predation was estimated by using exclosures. The total seed loss due to predation during four months (from late June to late October) in the field interior areas and boundary strips was estimated to be 35–43% (the maximum proportion of seed predation per two weeks = 27%) and 42% (25%), respectively. The seed predators in the field interior areas were vertebrates (rodents or birds) and invertebrates (crickets and ground beetles). In contrast, seed predators in the boundary strips were mainly invertebrates (crickets and ground beetles). The results of this study suggest that predators make a substantial contribution in the depletion of post-dispersal seeds of Italian ryegrass in converted paddy fields.  相似文献   

2.
The response of different feeding groups of staphylinid beetles to organic management, distance to perennial boundary and landscape context was studied in 42 paired organic and conventional winter wheat fields. Management effects were found to strongly depend on feeding group. While the activity-density of predators was higher in the conventional fields, both activity-density and species richness of detritivores were higher in the organic fields. Activity-density and species richness of detritivores were positively correlated to crop yield in the conventional but not in the organic fields. Unexpectedly, species richness as high as in the less productive organic fields was thus found in intensified conventional systems. No significant effects of landscape context could be found on activity-density or species richness of the different feeding groups. More species were caught near the field edge than in the middle, showing the importance of spill-over from field boundaries into arable crops for diversity. In conclusion, separation of species into feeding groups revealed patterns that have not been shown before. Decomposer diversity (but not that of predators and fungivores) was higher in organic fields, but reached similar levels in high-yielding conventional fields. Thus resource quality (purely organic or organic/synthetic fertiliser) and quantity appear to play a major role for this functional group.  相似文献   

3.
Experiments were carried out to determine effects of intercropping on macroarthropod predator activity, both diurnal and seasonal, and on relative consumption of lepidopteran pest larvae during a two-year study. Maize (corn, Zea mays) was intercropped into a grass-legume mixture and compared to monoculture maize. There was significantly more predator activity (number of attacks by predators on pest larvae) and predation (number of larvae consumed) in the intercropped system compared with the monocultured treatment during both years of the study. Predator activity and consumption of larvae were greatest at night in both systems and least during the day. However, the intercropped system had significantly more predator activity during each observation over a 24-h period than did the monocultured system. Predator activity and predation did not fluctuate appreciably over the early part of the growing season until August when there was a significant increase in both parameters. Carabid beetle larvae and spiders were the major predators in June, however, in July and August large carabid adults (> 15 mm) became the dominant predators. Significant correlations were found among carabid beetle activity, density estimates of macroarthropods and the number of lepidopteran larvae consumed in these corn agroecosystems. These correlations between techniques and endemic predatory arthropods indicate that predation is a significant factor in reducing pest populations in intercropped agroecosystems.  相似文献   

4.
The aim of this study was to determine the relative effects of landscape scale management intensity, agroecosystem type, local management intensity and edges on diversity patterns of functional groups of plants, carabid beetles, spiders and grasshoppers. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional mown meadows. Within fields, plants were surveyed in the edge and in the interior. Carabid beetles and spiders were captured by funnel traps, while grasshoppers were sweep-netted in the meadows. Diversity patterns of study organisms were affected both by local variables (local management, agroecosystem type and within-field position) and by landscape scale management intensity. Species richness of grasses, presumably because of sowing low-diversity mixtures, and hunting spiders decreased with percent cover of IAA. Meadows differed from wheat fields in that they had higher species richness of forbs and grasses, as well as higher densities of hunting spiders. In contrast, more carabid individuals, especially of non-carnivore species, were captured in wheat fields. In field edges with their reduced management intensity and increased immigration, species richness of plants, carabids and spiders was higher than in the interiors regardless of agroecosystem type and management. Organic management enhanced forb richness and cover in both agroecosystem types. Organic management also increased grass cover in wheat fields, but not in meadows, and promoted species richness of non-carnivore carabids and hunting spiders, but not grasshoppers. The results show that agri-environmental management needs to be targeted to the agroecosystem's field size, because higher edge area led to higher species richness. Organic management affected several functional groups positively (forbs, non-carnivore carabids, hunting spiders), while lower landscape scale management intensity only increased species richness of grasses and spiders. The great differences in responses of functional groups to local cereal and grassland as well as landscape management suggest implementing more scale and group specific targets for agri-environmental schemes to improve their efficiency.  相似文献   

5.
Dandelion Taraxacum agg. (formerly Taraxacum officinale G.H. Weber ex Wiggers) is a common weed species associated with pastures, grasslands and no-tillage cropping systems throughout its native range in Europe, and more recently introduced into North America, Australasia and elsewhere. Following wind-dispersal from the parent plant, its seeds are subject to predation from a host of invertebrate predators. Similarly, seedling predation may also significantly limit dandelion recruitment. Although such post-dispersal mortality is central to our understanding of dandelion population dynamics and therefore weed control, the precise spatio-temporal role played by different putative seed and seedling predators is poorly understood. Here we studied how seed viability, and seed and seedling predation influenced dandelion recruitment at two contrasting sites in central Europe. The abundance in the field and seed and seedling consumption in the laboratory were determined for the main groups of predators—ground beetles (Coleoptera: Carabiade), terrestrial isopods (Isopoda: Oniscidea) and molluscs (Gastopoda: Pulmonata). At particular sites, seed viability and seedling predation were negatively correlated while the percentage of seeds that succumbed to seed predation was similar. Combined factors accounted for the death of 98% and 87% of exposed seeds. Ground beetles (particularly Amara spp.) and terrestrial isopods (Armadillidium vulgare) were efficient and dominant seed predators, while slugs (Arion lusitanicus) and isopods were important predators of seedlings. While there was no seasonal trend in the intensity of seed predation it decreased towards autumn in parallel with the feeding activity of the declining population of A. lusitanicus. The mortality factors thus varied in their importance, largely between sites and less with the course of the season. Although seed inviability, seed and seedling predation did not stop the recruitment of dandelion seedlings they are crucial factors limiting dandelion populations. Methods of increasing the efficiency of predation of seed as a means of managing weeds are worthy of further study, particularly in areas where dandelion is an invasive species.  相似文献   

6.
Increasing dependence on off-farm inputs including, fertilizers, pesticides and energy for food and fiber production in the United States and elsewhere is of questionable sustainability resulting in environmental degradation and human health risks. The organic (no synthetic fertilizer or pesticide use), and low-input (reduced amount of synthetic fertilizer and pesticide use), farming systems are considered to be an alternative to conventional farming systems, to enhance agricultural sustainability and environmental quality. Soil N availability and leaching potential, crop yields and weeds are important factors related to agricultural sustainability and environmental quality, yet information on long-term farming system effects on these factors, especially in the organic and low-input farming systems is limited. Four farming systems: organic, low-input, conventional (synthetic fertilizer and pesticides applied at recommended rates) 4-year rotation (conv-4) and a conventional 2-year rotation (conv-2) were evaluated for soil mineral N, potentially mineralizable N (PMN), crop yields and weed biomass in irrigated processing tomatoes (Lycopersicon esculentum L.) and corn (Zea mays L.) from 1994 to 1998 in California’s Sacramento Valley. Soil mineral N levels during the cropping season varied by crop, farming system, and the amount and source of N fertilization. The organic and low-input systems showed 112 and 36% greater PMN pools than the conventional systems, respectively. However, N mineralization rates of the conventional systems were 100% greater than in the organic and 28% greater than in the low-input system. Average tomato fruit yield for the 5-year period (1994–1998) was 71.0 Mg ha−1 and average corn grain yield was 11.6 Mg ha−1 and both were not significantly different among farming systems. The organic system had a greater aboveground weed biomass at harvest compared to other systems. The lower potential risk of N leaching from lower N mineralization rates in the organic and low-input farming systems appear to improve agricultural sustainability and environmental quality while maintaining similar crop yields.  相似文献   

7.
A streamlined hybrid life cycle assessment is conducted to compare the global warming potential (GWP) and primary energy use of conventional and organic wheat production and delivery in the US. Impact differences from agricultural inputs, grain farming, and transport processes are estimated. The GWP of a 1 kg loaf of organic wheat bread is about 30 g CO2-eq less than the conventional loaf. When organic wheat is shipped 420 km farther to market, organic and conventional wheat systems have similar impacts. These results can change dramatically depending on soil carbon accumulation and nitrous oxide emissions from the two systems. Key parameters and their variability are discussed to provide producers, wholesale and retail consumers, and policymakers metrics to align their decisions with low-carbon objectives.  相似文献   

8.
Nitrate and pesticide contamination of surface and groundwater has become a major problem in intensive farming regions in Europe, with nitrate concentrations reaching values above the standard defined in 2000 by the European Water Framework Directive. In the Seine basin, a major issue is the closure and abandonment of drinking-water wells, which force water managers and drinking-water producers to explore solutions for water resource protection. Organic farming has appeared as a credible alternative to conventional farming, and this study explores the potential of organic farming to reconcile agricultural production and water quality. On the basis of agricultural statistics, survey questionnaires and experimental data, the nitrogen soil surface balance (N-SSB) has been established at the scale of a small 104-km2 catchment (The Orgeval sub-basin), representative of the intensive cash crop farming in the Seine basin. The N-surplus for arable land in specialized organic cash crop systems has been found to be half that of current conventional systems (15 kg N ha−1 yr−1 versus 30 kg N ha−1 yr−1, respectively). The N-yield in organic systems is 21% lower than in conventional systems, but total fertilization (mostly symbiotic N fixation) is also 26% lower. Whereas 2–3 years of forage legume (e.g., alfalfa) as a starter crop of the typical 7- to 10-year diversified rotation builds up N soil fertility and helps prevent weeds without pesticides, the existence of an outlet for this fodder production is a limiting factor for the economic sustainability and the environmental benefits of these farming systems. Therefore, we explored the possibility of a reconnection of livestock and crop farming systems in the Orgeval catchment, a traditional dairy farming and Brie cheese production region. We calculated the N-SSB for this type of a reconnected livestock and cropping system and found a value very close to the specialized organic cash crop system with full utilization of fodder production, leading to profitable animal production, essentially as milk in this farm design. This reconnected system is compared with the estimated situation in 1955 before separation of plant and livestock production. Furthermore, the N-SSB values were converted into infiltrating sub-root concentrations and used as a boundary condition to a biogeochemical model. Organic cropping and organic reconnected livestock cropping systems result in a 50% reduction of surface water nitrate concentrations, a surface water quality 20% better than that reconstructed for 1955, with an overall higher protein production.  相似文献   

9.
The influences of spatial scale, local conditions, and small vertebrate preferences on post-dispersal predation of weed seeds were tested in agricultural ecosystems of the Southern Pampas Region of Argentina. Seeds from different weed species were offered through exclusion experiments at different distances from the weedy field borders, inside maize (2005) and wheat (2006) stubbles with contrasting land use in the neighbor fields (annual crop fields vs. seminatural grasslands), and inside seminatural grasslands adjacent to stubbles. Canopy structure was characterized inside the wheat stubbles, and small mammals were sampled in both stubble crops and grasslands. All weed species were predated in both 2005 and 2006 trials, but predation ratios varied among weed species, partly due to their seed size, with larger ones being more preferred. While in the maize stubbles no distance or neighbor field land use effects, or interactions between the different factors were detected, in the wheat stubbles, influence of neighbor field land use on weed species predation varied according to distance from field border and the height of the stubble canopy. In wheat stubbles adjacent to annual crop fields, predation increased with canopy height at every different distance from the field borders (5 m, 30 m and 60 m). The opposite was found in wheat stubbles adjacent to seminatural grasslands, where seed predation sharply decreased with canopy height, except for the farthest distance to the border. Capture results suggest a predominance of Calomys spp. populations in crop areas (stubbles adjacent to annual crops) which contrasted with the more diverse small mammal’s community of the grasslands. Based on these data, we provide an insight into the hierarchical nature of factors affecting the predation of weed seeds and discuss some implications of land use patterns on the regulation of weed populations by small vertebrates.  相似文献   

10.
Earthworm and termite diversity were studied in 12 long-term agricultural field trials across the sub-humid to semi-arid tropical zones of Eastern and Western Africa. In each trial, treatments with high and low soil organic C were chosen to represent contrasts in long-term soil management effects, including tillage intensity, organic matter and nutrient management and crop rotations. For each trial, a fallow representing a relatively undisturbed reference was also sampled. Earthworm taxonomic richness decreased in the direction fallow > high-C soil > low-C soil and earthworm abundance was higher in fallow than under continuous crop production. Termite abundance was not significantly different between fallow and high and low-C treatments and termite taxonomic richness was higher in fallow soil than in the two cropping systems. We concluded that fewer species of earthworms and termites were favored under agricultural management that led to lower soil C. Results indicated that the soil disturbance induced by continuous crop production was more detrimental to earthworms than to termites, when compared to the fallow.  相似文献   

11.
Agriculture is an important contributor to global emissions of greenhouse gases (GHG), in particular for methane (CH4) and nitrous oxide (N2O). Emissions from farms with a stock of ruminant animals are particularly high due to CH4 emissions from enteric fermentation and manure handling, and due to the intensive nitrogen (N) cycle on such farms leading to direct and indirect N2O emissions. The whole-farm model, FarmGHG, was designed to quantify the flows of carbon (C) and nitrogen (N) on dairy farms. The aim of the model was to allow quantification of effects of management practices and mitigation options on GHG emissions. The model provides assessments of emissions from both the production unit and the pre-chains. However, the model does not quantify changes in soil C storage.Model dairy farms were defined within five European agro-ecological zones for both organic and conventional systems. The model farms were all defined to have the same utilised agricultural area (50 ha). Cows on conventional and organic model farms were defined to achieve the same milk yield, so the basic difference between conventional and organic farms was expressed in the livestock density. The organic farms were defined to be 100% self-sufficient with respect to feed. The conventional farms, on the other hand, import concentrates as supplementary feed and their livestock density was defined to be 75% higher than the organic farm density. Regional differences between farms were expressed in the milk yield, the crop rotations, and the cow housing system and manure management method most common to each region.The model results showed that the emissions at farm level could be related to either the farm N surplus or the farm N efficiency. The farm N surplus appeared to be a good proxy for GHG emissions per unit of land area. The GHG emissions increased from 3.0 Mg CO2-eq ha−1 year−1 at a N surplus of 56 kg N ha−1 year−1 to 15.9 Mg CO2-eq ha−1 year−1 at a N surplus of 319 kg N ha−1 year−1. The farm N surplus can relatively easily be determined on practical farms from the farm records of imports and exports and the composition of the crop rotation. The GHG emissions per product unit (milk or metabolic energy) were quite closely related to the farm N efficiency, and a doubling of the N efficiency from 12.5 to 25% reduced the emissions per product unit by ca. 50%. The farm N efficiency may therefore be used as a proxy for comparing the efficiencies of farms with respect to supplying products with a low GHG emission.  相似文献   

12.
Nitrous oxide (N2O) emissions from agriculture are currently estimated from N inputs using emission factors, and little is known about the importance of regional or management-related differences. This paper summarizes the results of a study in which N2O emission rates were recorded on 15–26 occasions during a 12-month period in organic and conventional dairy crop rotations in five European countries (Austria, Denmark, Finland, Italy, UK). A common methodology based on static chambers was used for N2O flux measurements, and N2O data were compiled together with information about N inputs (from fertilizers, N2 fixation, atmospheric deposition and excretal returns), crop rotations and soil properties. Organic rotations received only manure as N fertilizer, while manure accounted for 0–100% of fertilizer N in conventional rotations. A linear regression model was used to examine effects of location, system and crop category on N2O emissions, while a second model examined effects of soil properties. Nitrous oxide emissions were higher from conventional than from organic crop rotations except in Austria and, according to the statistical analysis, the differences between locations and crop categories were significant. Ammonium was significantly related to N2O emissions, although this effect was dominated by observations from a grazing system. Despite the limited number of samplings, annual emissions were estimated by interpolation. Across the two systems and five locations there was a significant relationship between total N inputs and N2O emissions at the crop rotation level which indicated that annually 1.6 ± 0.2% (mean ± standard error) of total N inputs were lost as N2O, while there was a background emission of 1.4 ± 0.3 kg N2O-N ha−1 year−1. Although this measurement program emphasized system effects at the expense of high temporal resolution, the results indicate that N input is a significant determinant for N2O emissions from agricultural soils.  相似文献   

13.
Carbon (C) input from tree prunings and crop residues help to maintain the soil organic C pool in tropical agroforestry systems. This study quantified the C stock of tree roots and C input from tree prunings and crop residues in 19-, 10- and 4-year-old Erythrina poeppigiana and Gliricidia sepium alley cropping systems in Costa Rica. The 19-year-old alley cropping system was studied at two fertilizer levels (tree prunings only [−N], and tree prunings plus chicken manure [+N]), and was compared to a sole crop. The 10- and 4-year-old systems were also studied at two fertilizer levels (tree prunings only [−A], and tree prunings plus Arachis pintoi as a groundcover [+A]), and compared to a sole crop. In the 19-year-old system C input from G. sepium was significantly greater (P < 0.05) compared to E. peoppigiana, but for both tree species there was no significant difference between +N and −N treatments. For the 10- and 4-year-old systems, E. poeppigiana had a significantly higher (P < 0.05) C input from prunings compared to G. sepium, and the presence of A. pintoi increased pruning biomass productivity significantly in these systems. Tree roots of 10- (4527 kg C ha−1) and 4-year-old (3667 kg C ha−1) E. poeppigiana represented 16 and 28% of the total C allocation. Carbon input from maize (Zea mays L.) and bean (Phaseolus vulgaris L.) residues were not significantly different (P < 0.05) between alley crops and sole crops in the 19-year-old system per unit of cropped land. In this system, +N treatments had a significantly greater (P < 0.05) C input from bean residue than in −N treatments, but no such trend was observed for maize residues. Carbon input from maize and bean residues were significantly greater (P < 0.05) in alley crops than the sole crops, but not significantly different (P < 0.05) between +A and −A treatments in the younger system. The greatest input of organic material occurred in the 19-year-old alley crop followed by the 10- and 4-year-old alley crops. This additional input of organic material in alley crops, mostly derived from tree prunings, will help to maintain or increase the level of the soil organic carbon pool.  相似文献   

14.
Tillage practices affect the fate of fertilizer nitrogen (N) through influencing transformations of N, but few studies have examined N2O and NH3 emissions, and N leaching from different rice tillage systems. Thus the objective of this study was to assess N2O emission, NH3 volatilization and N leaching from direct seeded rice in conventional tillage (CT) and no-tillage (NT) production systems in the subtropical region of China during the 2008 and 2009 rice growing seasons. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the sub-plot treatment, and there were four treatments: NT + no fertilizer (NT0), CT + no fertilizer (CT0), NT + compound fertilizer (NTC) and CT + compound fertilizer (CTC), respectively. Results showed that N fertilization significantly increased (p < 0.01) N2O emissions, NH3 volatilization and N leaching from rice fields in both years. In general, there was no significant difference in N2O emissions and NH3 volatilization between NT0 and CT0 in both years, while NTC had significantly higher (p < 0.05) N2O emissions and NH3 volatilization compared to CTC. Over the two rice growing seasons, NTC showed 32% and 47% higher N2O emissions, and 29% and 52% higher NH3 losses than CTC. Higher (p < 0.05) N2O emissions from NTC than CTC were presumably due to higher soil organic C and greater denitrification. Total N and NO3? concentrations were higher (p < 0.05) in CTC than NTC, but larger volumes of percolation water in NTC than CTC resulted in no significant difference in leakage of total N and NO3?. Hence, application of N fertilizer in combination with NT appeared to be ineffective in reducing N losses from N fertilizer in paddy fields.  相似文献   

15.
The effects of organic management and landscape context on two highly endemic and important pollinator taxa (bees and monkey beetles) were studied in the Cape Floristic Region (CFR) biodiversity hotspot, where a quarter of the land is intensively managed mostly for grape production. This functional group was chosen as there is concern worldwide over pollinator decline, particularly in regions of high levels of endemism of both flora and fauna such as the CFR. Species richness and abundance of bees and monkey beetles were sampled and compared between organic and conventional vineyards, with natural vegetation as reference habitat. Species richness of monkey beetles, but not the species richness of bees, benefited from organic compared to conventional vineyard management. Our findings support the hypothesis that the effects of landscape context and management may be taxon dependent. Monkey beetles have been suggested as strong indicators of disturbance. These beetles are among the most important pollinator guilds in the CFR, as they help to sustain the endemic vegetation of this region. Protection of the remaining natural habitat in close proximity to farmland is an imperative conservation strategy in this region.  相似文献   

16.
In the United Kingdom, as with other European countries, land-based emissions of NOx and SO2 have fallen significantly over the last few decades. SO2 emissions fell from a peak of 3185 Gg S in 1970 to 344 Gg S in 2005 and are forecast by business-as-usual emissions scenarios to fall to 172 Gg by 2020. NOx emissions were at a maximum of 951 Gg N in 1970 and fell to 378 by 2005 with a further decrease to 243 Gg N forecast by 2020. These large changes in emissions have not been matched by emissions changes for NH3 which decreased from 315 Gg N in 1990 to 259 in 2005 and are forecast to fall to 222 by 2020. The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of sulphur and nitrogen deposition over the United Kingdom during a 15-year time period (1990–2005) and compared with measured deposition of sulphate, nitrate and ammonium from the national monitoring network. Wet deposition of nitrogen and sulphur was found to decrease more slowly than the emissions reductions rate. This is attributed to a number of factors including increases in emissions from international shipping and changing rates of atmospheric oxidation. The modelled time series was extended to a 50-year period from 1970 to 2020. The modelled deposition of SOx, NOy and NHx to the UK was found to fall by 87%, 52% and 25% during this period. The percentage area of sensitive habitats in the United Kingdom for which critical loads are exceeded is estimated to fall from 85% in 1970 to 37% in 2020 for acidic deposition and from 73% to 49% for nutrient nitrogen deposition. The significant reduction in land emissions of SO2 and NOx focuses further attention in controlling emissions from international shipping. Future policies to control emissions of ammonia from agriculture will be required to effect further significant reductions in nitrogen deposition.  相似文献   

17.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

18.
Stored solid manure heaps can be a significant source of nitrous oxide (N2O) and methane (CH4) emissions. The manure characteristics influence emissions and solid manure heaps can be managed to promote aerobic decomposition during storage. Increasing the carbon (C) content of the manure heap with high-C additives, such as straw, may provide the opportunity for N2O and CH4 emission reduction. Greenhouse gas (GHG) emissions from conventionally produced farmyard manure (FYM) have been quantified, but there is little data on emissions from organically produced FYM. N2O and CH4 emissions were measured using a small-scale storage method from FYM collected from organic and conventional dairy units under a range of storage conditions with and without extra straw addition.The organic and the conventional FYM were similar in composition except for the higher C and dry matter content in the organic FYM and in the FYM with added straw. This resulted in mean total emissions of N2O and CH4 being lower from the organic (27 g N t−1) than the conventional FYM (52 g N t−1) and from the treatments with straw added (32 g N t−1) than those without (47 g N t−1). The initial C:N ratio and dry matter content of the stored FYM were the most important factors affecting N2O and CH4 emissions although the FYM temperature also affected CH4 emissions. Adding high-C additives, such as straw could be a promising strategy for reducing GHG emissions because it influences the dry matter content, C:N ratio and aeration of the manure. The small-scale FYM storage method were shown to be a reliable and an easy method to quantify emissions under a range of environmental conditions and manure manipulations and so develop effective manure management practices to reduce GHG emissions.  相似文献   

19.
Restoration of fat stores is metabolic first priority for many insects that emerge from hibernation with depleted fat bodies. To some extent, the animals must be flexible and use whatever foods available irrespective of their nutrient composition. Previously, the carabid beetles Anchomenus dorsalis have been found to refill their fat stores to the same extent over 9 days irrespective of the nutrient composition of their food. However, a higher cost of fat deposition when the food was rich in sugar or protein rather than lipid was indicated by higher total energy consumption. Here, we test the hypothesis of increased metabolic costs of building fat stores from sugar- or protein-rich food than from lipid-rich food by microcalorimetry. We measured the heat emitted from beetles that had fed on sugar-, protein-, or lipid-rich food for 0 (common control), 2, 5, or 10 days. As predicted, heat emission was increased in beetles getting sugar- and protein-rich food compared with those getting lipid-rich food. However, we did not confirm the beetles’ ability to rebuild fat stores from protein-rich food; instead, they increased in lean mass. Overall, sugar-rich food seems to be optimal for post-winter recovery, because it is better than lipid-rich food that allows concurrent rebuilding of fat stores and lean mass, which may benefit preparation for spring migration and reproduction. We propose that overwintered fruits may be highly preferred post-diapause food for these otherwise mostly carnivorous beetles.  相似文献   

20.
To reduce the environmental burden of agriculture, suitable methods to comprehend and assess the impact on natural resources are needed. One of the methods considered is the life cycle assessment (LCA) method, which was used to assess the environmental impacts of 18 grassland farms in three different farming intensities — intensive, extensified, and organic — in the Allgäu region in southern Germany. Extensified and organic compared with intensive farms could reduce negative effects in the abiotic impact categories of energy use, global warming potential (GWP) and ground water mainly by renouncing mineral nitrogen fertilizer. Energy consumption of intensive farms was 19.1 GJ ha−1 and 2.7 GJ t−1 milk, of extensified and organic farms 8.7 and 5.9 GJ ha−1 along with 1.3 and 1.2 GJ t−1 milk, respectively. Global warming potential was 9.4, 7.0 and 6.3 CO2-equivalents ha−1 and 1.3, 1.0 and 1.3 CO2-equivalents t−1 milk for the intensive, extensified and organic farms, respectively. Acidification calculated in SO2-equivalents was high, but the extensified (119 kg SO2 ha−1) and the organic farms (107 kg SO2 ha−1) emit a lower amount compared with the intensive farms (136 kg SO2 ha−1). Eutrophication potential computed in PO4-equivalents was higher for intensive (54.2 kg PO4 ha−1) compared with extensified (31.2 kg PO4 ha−1) and organic farms (13.5 kg PO4 ha−1). Farmgate balances for N (80.1, 31.4 and 31.1 kg ha−1) and P (5.3, 4.5 and −2.3 kg ha−1) for intensive, extensified and organic farms, respectively, indicate the different impacts on ground and surface water quality. Analysing the impact categories biodiversity, landscape image and animal husbandry, organic farms had clear advantages in the indicators number of grassland species, grazing cattle, layout of farmstead and herd management, but indices in these categories showed a wide range and are partly independent of the farming system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号