首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
‘End-to-end’ models have been adopted in an attempt to capture more of the processes that influence the ecology of marine ecosystems and to make system wide predictions of the effects of fishing and climate change. Here, we develop an end-to-end model by coupling existing models that describe the dynamics of low (ROMS–N2P2Z2D2) and high trophic levels (OSMOSE). ROMS–N2P2Z2D2 is a biogeochemical model representing phytoplankton and zooplankton seasonal dynamics forced by hydrodynamics in the Benguela upwelling ecosystem. OSMOSE is an individual-based model representing the dynamics of several species of fish, linked through opportunistic and size-based trophic interactions. The models are coupled through a two-way size-based predation process. Plankton provides prey for fish, and the effects of predation by fish on the plankton are described by a plankton mortality term that is variable in space and time. Using the end-to-end model, we compare the effects of two-way coupling versus one-way forcing of the fish model with the plankton biomass field. The fish-induced mortality on plankton is temporally variable, in part explained by seasonal changes in fish biomass. Inclusion of two-way feedback affects the seasonal dynamics of plankton groups and usually reduces the amplitude of variation in abundance (top-down effect). Forcing and coupling lead to different predicted food web structures owing to changes in the dominant food chain which is supported by plankton (bottom-up effect). Our comparisons of one-way forcing and two-way coupling show how feedbacks may affect abundance, food web structure and food web function and emphasise the need to critically examine the consequences of different model architectures when seeking to predict the effects of fishing and climate change.  相似文献   

2.
We modeled a fishery's system with two types of fishermen, commercial and subsistence fishermen, who exploit the fish stock at the Amazonian floodplain lakes. In the first model, we combined the Lotka-Volterra equations with Verhulst's Logistic model, by inserting hydrological cycle oscillations. The second model was based on the equations proposed by Berryman, which reflect the predator's functional response in relation to the prey's population behavior, taking into account the hydrological cycle. In both models, commercial fishermen and local direct consumers (called riverside dwellers - riverines - in the model), were considered the only predators acting upon fishing stocks. Primary data were collected in 48 riverside homes throughout 2006. The total number of interviewees corresponds to 69.6% of the universe of homes in the community defined as study area. The riverines were the predators that showed capacity to eliminate the opponent predators (commercial fishermen). The best scenery obtained regarding the number of prey, was the one that showed only commercial fishermen in the region. On the other hand, the simulations show that the coexistence is possible among predators, and between predators and their prey. The seasonal model with functional response provides a better response in relation to the system's current situation and to the established modeling conditions than the Lotka-Volterra seasonal model. The seasonal model with functional response also showed a better response pattern in all scenarios, with oscillations taking place more gradually, both for variations associated with the flooding pulse and for relations between predators and prey.  相似文献   

3.
Venous blood lead values for 2,633 children aged 0–4 years in Syracuse, New York, collected between 1 April 1992 and 31 March 1993 were summarised by census tract for study of geographic variability. A demographic exposure model is presented showing housing stock and SES (socioeconomic status) parameters as the most significant predictor variables. A seasonal trend in blood lead levels was observed with late summer values about 40% higher than late winter values for census tracts with the highest geometric mean PbB levels. Seasonal variation is compared with a biokinetic uptake model to examine hypotheses about temporal variations in soil and dust lead exposure patterns.  相似文献   

4.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

5.
Selecting a binary Markov model for a precipitation process   总被引:1,自引:0,他引:1  
This paper uses rth-order categorical Markov chains to model the probability of precipitation. Several stationary and non-stationary high-order Markov models are proposed and compared using BIC. The number of parameters increases exponentially by adding the Markov order. Several classes of high-order Markov models are proposed which their increase of number of parameters are modest. For example models that use the number of precipitation days in a period prior to date, temperature of the previous day and sines/cosines periodic functions (to model the seasonality) are considered. The theory of partial likelihood is used to estimate the parameters. Parsimonious non-stationary first order Markov models with few seasonal terms are found optimal using BIC and temperature does not turn out to be a useful covariate. However BIC seems to underestimate the number of seasonal terms. We have also compared the results with AIC in some cases which tends to pick parsimonious models with more seasonal terms and higher order. We also show that ignoring seasonal terms result in picking higher order Markov chains. Finally we apply the methods to build confidence intervals for the probability of periods with no precipitation or low number of precipitation days in Calgary using historical data from 1980 to 2000.  相似文献   

6.
Diet and respiration of the small planktonic marine copepod Oithona nana   总被引:5,自引:0,他引:5  
The functional responses of Oithona nana (Giesbr.) to various phytoplankton and zooplankton food species are described. The food species were divided into three size categories, the seasonal abundances of which were measured in Loch Turnaig, a Scottish sea loch in 1977. The seasonal variations in feeding rates in the sea for each size class were derived. The seasonal variation in respiration rate of O. nana was measured, and metabolic requirements were claculated as between 6 and 40% of the food material estimated as being eaten. O. nana differs from other common copepods in having a wide food-particle size spectrum and a low metabolic rate. It is suggested that these adaptations constitute the strategy whereby O. nana maintains its population levels throughout the year.  相似文献   

7.
Models are reviewed describing the distribution and effect of heavy metals in an aquatic ecosystem. Since a model used for an impact statement should give the maximum concentration level rather than the seasonal variation, a model focussing on this situation is suggested. The basic differential equations describe (1) the variation in concentration of the toxicant per biomass dry matter in a given trophic level, and (2) the exchange of toxicant between sediment and water. Furthermore, since a substantial part of the heavy metal in an aquatic ecosystem is bound to suspended matter, an equation describing the equilibrium between dissolved and suspended matter must be included.A literature review has been carried out on the parameters used in the above mentioned equations and a demonstration, showing how it is possible to find approximate values for such parameters as excretion coefficient and uptake coefficient on the basis of a relationship between these two parameters and the size of an organism, is given.  相似文献   

8.
Insect larvae increase in size with several orders of magnitude throughout development making them more conspicuous to visually hunting predators. This change in predation pressure is likely to impose selection on larval anti-predator behaviour and since the risk of detection is likely to decrease in darkness, the night may offer safer foraging opportunities to large individuals. However, forsaking day foraging reduces development rate and could be extra costly if prey are subjected to seasonal time stress. Here we test if size-dependent risk and time constraints on feeding affect the foraging–predation risk trade-off expressed by the use of the diurnal–nocturnal period. We exposed larvae of one seasonal and one non-seasonal butterfly to different levels of seasonal time stress and time for diurnal–nocturnal feeding by rearing them in two photoperiods. In both species, diurnal foraging ceased at large sizes while nocturnal foraging remained constant or increased, thus larvae showed ontogenetic shifts in behaviour. Short night lengths forced small individuals to take higher risks and forage more during daytime, postponing the shift to strict night foraging to later on in development. In the non-seasonal species, seasonal time stress had a small effect on development and the diurnal–nocturnal foraging mode. In contrast, in the seasonal species, time for pupation and the timing of the foraging shift were strongly affected. We argue that a large part of the observed variation in larval diurnal–nocturnal activity and resulting growth rates is explained by changes in the cost/benefit ratio of foraging mediated by size-dependent predation and time stress.  相似文献   

9.
Meng  Qingchen  Liu  Hongbo  Zhang  Haodong  Xu  Suyun  Lichtfouse  Eric  Yun  Yunbo 《Environmental Chemistry Letters》2022,20(3):1745-1762

About 1.6 billion tons of food are wasted worldwide annually, calling for advanced methods to recycle food waste into energy and materials. Anaerobic digestion of kitchen waste allows the efficient recovery of energy, and induces low-carbon emissions. Nonetheless, digestion stability and biogas production are variables, due to dietary habits and seasonal diet variations that modify the components of kitchen waste. Another challenge is the recycling of the digestate, which could be partly solved by more efficient reactors of anaerobic digestion. Here, we review the bottlenecks of anaerobic digestion treatment of kitchen waste, with focus on components inhibition, and energy recovery from biogas slurry and residue. We provide rules for the optimal treatment of the organic fraction of kitchen waste, and guidelines to upgrade the anaerobic digestion processes. We propose a strategy using an anaerobic dynamic membrane bioreactor to improve anaerobic digestion of kitchen waste, and a model for the complete transformation and recycling of kitchen waste, based on component properties.

  相似文献   

10.
The objective of this study is to provide a perspective on the extremes of sea-level variability and predictability for the U.S.-Affiliated Pacific Islands (USAPI) on seasonal time-scales. Based on the Generalized Extreme Value (GEV) model, the L-moments method has been used to estimate the model parameters. The bootstrap method has been used to define the exceedance probability level of upper and lower bounds of the return periods at the 90% confidence interval. On the basis of these return calculations and expected extremes of high sea level, the seasonal maxima of sea level and the varying likelihood of extreme events have been estimated. For analyzing the predictability of the extremes of sea-level, a canonical correlation analysis (CCA) statistical model has been developed. Findings reveal that there is seasonal climatology of extreme events in the vicinity of USAPI that are variable on temporal and spatial scales. Some of the islands (Yap and Saipan) display considerably higher seasonal extremes than the others for 20 to 100 year return periods because of typhoon-related storm surges. These surges are likely to cause huge tidal large sea-level inundations and increased erosion to low-lying atolls/islands and result in considerable damage to roads, harbors, unstable sandy beaches, and other major infrastructures. Finally, the need for evaluating the extreme events and associated typhoons from a regional perspective has been stressed for coastal hazard management decision analyses in the USAPI.  相似文献   

11.
The structure of the reproductive system in Copepodite Stages IV and V of the marine copepod Calanus finmarchicus (Gunnerus) is described, together with seasonal variations in gonad development and sex ratio, from Balsfjorden (69°21N; 19°06E), a subarctic fjord in northern Norway. The genital system in Copepodite Stage IV consists of a small gonad with two genital ducts. The gonad of Copepodite Stage V in its most immature condition resembles that seen in Copepodite Stage IV, whereas the sex of Stage V copepodites with mature gonads can be easily and reliably determined. The genital ducts are the key characters for separating males and females in Copepodite Stage V; potential males have one and potential females two genital ducts connecting the gonad to the genital opening on the first urosome segment. Adults males were rare compared to females, and were only in the majority at the end of January and beginning of February. The sex-ratio also favoured females in Copepodite Stage V. Seasonal peaks in the proportion of adult males reflected peaks of males in Copepodite Stage V, suggesting that seasonal variations in the adult sex-ratio are a direct result of a situation which has already been determined in Copepodite Stage V. The seasonal variation in gonad development in Copepodite Stages IV and V of C. finmarchicus reveals that the size of maturity of the gonad varies throughout the year. This study indicates that visible sex-differentiation in Stage V and moulting into adults occurs in Balsfjorden at least 2 months before spawning in April. Phytoplankton levels are immeasurable before the spring diatom increase starts at the end of March, implying that development and maturation of gonads are dependent upon internal energy resources, whereas the final act of spawning seems to require energy input from phytoplankton.  相似文献   

12.
《Ecological modelling》2005,186(4):427-446
Community interactions of small rodents have attracted the attention of ecologists for many years due to their abrupt changes in population numbers, their impact on the whole biocoenosis and also because of immense damages to agricultural production and forestry. In particular, regularly oscillating rodent populations in Scandinavia have been subject of discussions among theoretically and empirically working ecologists for many decades. Spatial and temporal restrictions in empirical work led to various attempts to model these dynamics to understand large scale effects resulting from complex interactions in variable cause-effect networks of the numerous involved system components.The presented individual-based model for the first time described small rodent communities as a set of interacting autonomously acting agents with a detailed life history and behavioural repertoire in a food-web setup composed of three trophic levels (rodents, rodents food and predators). It thus allowed to integrate all relevant factors accounting for the dynamics of rodents which acted in a simulated environment containing the spatial arrangement of habitats and seasonal changing conditions. Due to the representation with interacting entities, the dynamics on higher levels resulted in a self-organisation process as emergent properties. This differentiation between the focal and the operational level allowed to investigate processes interacting between different integration levels and to adapt the model to different scenarios easily as well as to specify it for a large range of rodents species.Simulations have been executed for two different scenarios. The Bornhöved scenario simulating the situation of a Northern German rodent community in a beech forest represented bottom-up effects of mast events on population dynamics. The Scandinavian scenario which depicted the most important actors of these oscillating rodent communities, gave new insights into the processes causing the sudden decline of rodent populations. Both, lack of resources and predation, contributed to about 90% of mortality, but no pattern could be found when relating either cause with the properties of the respective cycle. Bottom up and top down control vary unpredictably and chaotically in the model. These results may explain considerable parts of contradicting empirical findings.  相似文献   

13.
Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate seasonal variability of water quality in municipal small water systems (<3000 residents) supplied by surface waters. Residual chlorine and trihalomethanes (THM) were measured over seven years (2003–2009). Comparisons are made within each system over time, as well as between systems according to the type of their treatment technologies. THM concentrations are generally higher in the summer and autumn. The seasonal variability was generally more pronounced in systems using chlorination plus additional treatment. Chloroform, total THM (TTHM) and residual chlorine concentrations were generally lower in systems using chlorination plus additional treatment. Conversely, brominated THM concentrations were higher in systems using additional treatment. Residual chlorine was highest in the winter and lowest in the spring and summer. Seasonal variations were most pronounced for residual chlorine in systems with additional treatment. There was generally poor correlation between THM concentrations and concentrations of residual chlorine. Further study with these data will be beneficial in finding determinants and indicators for both quantity and variability of disinfection byproducts and other water quality parameters.  相似文献   

14.
To obtain comparable results of multi‐element analysis of plant materials by different laboratories, a harmonized sampling procedure for terrestrial and marine ecosystems is essential. The heterogeneous distribution of chemical elements in living organisms is influenced by different biological parameters. These parameters are mainly characterized by genetic predetermination, seasonal changes, edaphic and climatic conditions, and delocalization processes of chemical substances by metabolic activities.

The biological variations of the element content in plants were divided into 5 systematic levels, which are: 1. the plant species; 2. the population; 3. the stand (within an ecosystem); 4. the individual; and 5. the plant compartment. Each of these systematic levels can be related to: 1. genetic variabilities; 2. different climatic, edaphic and anthropogenic influences; 3. microclimatic or microedaphic conditions; 4. age of plants (stage of development), exposure to environmental influences (light, wind, pollution etc.), seasonal changes; and 5. transport and deposition of substances within the different plant compartments (organs, tissues, cells, organelles).

An expert system for random and systematic sampling for multi‐element analysis of environmental materials, such as plants, soils and precipitation is presented. After statistical division of the research area, the program provides advice for contamination‐free collection of environmental samples.  相似文献   

15.
A simple simulation model was developed to describe the growth trends of Cymodocea nodosa (Ucria) Ascherson based on data sets from the Venice lagoon. The model reproduces the seasonal fluctuations in the above and belowground biomass and in shoot density. The modeling results are in good agreement with data on net production, growth rates and chemical–physical parameters of water. It was assumed that light and temperature are the most important factors controlling C. nodosa development, and that the growth was not limited by nutrient availability. The aim was to simulate biomass production as a function of external forcing variables (light, water temperature) and internal control (plant density). A series of simulation experiments were performed with the basic model showing that among the most important phenomena affecting C. nodosa growth are: (1) inhibition of production and recruitment of new shoots by high temperature and (2) light attenuation due to seasonal fluctuation.  相似文献   

16.
Respiration rates of Hypnea musciformis (Wulfen) Lamouroux in Florida, USA, generally increased with increased temperature. Gulf coast H. musciformis respired at significantly higher rates than the Atlantic coast population, which exhibited a region of temperature independence between 24°–32°C. Respiration rates were highest in the fall and winter, during the periods of rapid growth. Respiration rates were lowest in the summer indicating a period of storage and low metabolism. Photosynthetic responses to various levels of light and temperature indicated that the Gulf coast population was more tolerant to high light intensities than the Atlantic coast population. Maximum photosynthetic responses for both populations occurred between 24° and 32°C which corresponds to the shallow slope region of the respiration-temperature curves. The results indicate that water temperature rather than light intensity is a significant factor in modifying seasonal photosynthetic capacities. The greatest seasonal variation in photosynthetic responses occurred at the light-temperature levels of highest responses while little seasonal variation was demonstrated at tolerance limits.  相似文献   

17.
18.
The influence of different nutrient sources on the seasonal variation of nutrients and phytoplankton was assessed in the northern area of the Perth coastal margin, south–western Australia. This nearshore area is shallow, semi-enclosed by submerged reefs, oligotrophic, nitrogen-limited and receives sewage effluent via submerged outfalls. Analysis of 14 year of field observations showed seasonal variability in the concentration of dissolved inorganic nitrogen and phytoplankton biomass, measured as chlorophyll-a. For 2007–2008, we quantified dissolved inorganic nitrogen inputs from the main nutrient sources: superficial runoff, groundwater, wastewater treatment plant effluent, atmospheric deposition and exchange with surrounding coastal waters. We validated a three-dimensional hydrodynamic-ecological model and then used it to assess nutrient-phytoplankton dynamics. The model reproduced the temporal and spatial variations of nitrate and chlorophyll-a satisfactorily. Such variations were highly influenced by exchange through the open boundaries driven by the wind field. An alongshore (south–north) flow dominated the flux through the domain, with dissolved inorganic nitrogen annual mean net-exportation. Further, when compared with the input of runoff, the contributions from atmospheric-deposition, groundwater and wastewater effluent to the domain’s inorganic nitrogen annual balance were one, two and three orders of magnitude higher, respectively. Inputs through exchange with offshore waters were considerably larger than previous estimates. When the offshore boundary was forced with remote-sensed derived data, the simulated chlorophyll-a results were closer to the field measurements. Our comprehensive analysis demonstrates the strong influence that the atmosphere–water surface interactions and the offshore dynamics have on the nearshore ecosystem. The results suggest that any additional nutrient removal at the local wastewater treatment plant is not likely to extensively affect the seasonal variations of nutrients and chlorophyll-a. The approach used proved useful for improving the understanding of the coastal ecosystem.  相似文献   

19.
引入利益相关者理论对我国农村水污染治理减低污染风险的驱动因素进行了识别。通过对农村水污染系统内的利益相关者进行界定,划分了政府、农村社区居民和社会力量3个利益群体,并通过Binary Logistic回归模型对3个利益群体的驱动力进行量化分析,经实证模型检验表明,反映政府作用的考核机制(含财政投入与监管能力)、反映社会力量的社会资金投入以及反映农村社区作用的自主管理能力和居民环保投入所占比重的发生比(OR值)分别为2.248、1.725、1.525和1.236,表明政府主导对减轻农村水污染起关键作用,社会力量和农民社区自身多方发挥作用对降低农村水污染风险的影响也是显著的。  相似文献   

20.
The pattern of seasonal gonadal development and variations in plasma sex steroids were investigated in adult male and female winter flounder, Pleuronectes americanus (Walbaum), from Conception Bay Newfoundland beginning August 1987 to December 1988. The winter flounder reproductive cycle can be divided into five consecutive phases of relative reproductive activity including: (1) rapid gonadal recrudescence in the fall (August–December); (2) continued slow gondadal growth in females, or maintenance of the well developed gonads in males, during the winter (December–February); (3) a prespawning phase of gonadal maintenance in the spring (March–April); (4) spawning early in the summer (May–June) after the female gonads reach peak weight; and (5) the summer postspawned period (June–August) when the gonads remain regressed. Female gonadal recrudescence in August is characterized by small increases in plasma estrogen levels and recruitment of small oocytes (150 m) into yolk accumulation. For the winter months, estradiol-17 levels in the plasma remain stable, approximately 15 ng ml-1, until rising again together with testosterone to peak hormone levels just prior to spawning in conjunction with the highest seasonal values for the gonadosomatic index (GSI) and oocyte diameter. After spawning, the ovaries are regressed and sex steroids in the plasma fall to very low levels. Rapid seasonal recrudescence of the gonads in males is evident from rising GSI values, which reach a maximum in October, and from substantial early seasonal increases in plasma testosterone and 11-ketotestosterone. Afterwards, although GSI values subsequently decline presumably reflecting the process of spermiogenesis and/or onset of spermiation in some males, the testes remain relatively well developed with the presence of sperm throughout the spawning season. As the proportion of spermiating males increases, the plasma levels of the androgenic steroid hormones rise to peak circulating levels from April to June. At the end of the summer reproductive season, the testes of post-spawned males become regressed and plasma testosterone and 11-ketotestosterone levels fall, reaching the lowest seasonal values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号