首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Growth rates of summer (June–September) phytoplankton assemblages and constituent species were measured in 30 diffusion culture experiments. Size-fractionated (<10 m) phytoplankton assemblages were incubated in situ or under simulated in-situ conditions in outdoor tanks connected to a running seawater system. Doubling rates of important species and groups (such as microflagellates) were compared to community biomass doubling rates estimated from 14C uptake and changes in chlorophyll a concentrations. Division rates of dominant diatom species generally equalled or exceeded community biomass doubling rates, while those of flagellates and non-motile ultraplankters were slower. Maximum division rates of sixteen common diatom species exceeded 2.1 divisions d-1, while nine had maximum division rates in excess of 3 d-1. Mean division rates of 12 diatom species exceeded 1 d-1. Maximum division rates of flagellated species, uncharacterized microflagellates and non-motile ultraplankton assemblages were 2.1, 1.5 and 1.4 d-1, respectively. Microflagellate and non-motile ultraplankton assemblage doubling rates were less than 0.5 d-1 in over half of all growth experiments.  相似文献   

2.
The blacksmith Chromis punctipinnis, an abundant planktivorous damselfish off southern California, USA, shelters along rocky reefs at night. While sheltered, blacksmiths excrete ammonium that could, in turn, be utilized by nearby benthic macrophytes. Laboratory experiments during the summer and fall of 1983 and 1984 indicate that ammonium excretion at night ranged from 18.1 mol h-1 by a 8.5 g (dry) fish, to 89.1 mol h-1 by a 27.3 g fish; excretion rates generally declined throughout the night. Field measurements at night indicate that ammonium concentrations were significantly higher in rocky crevices occupied by blacksmiths than in unoccupied shelters, and the ammonium level in one shelter dropped after a blacksmith was experimentally removed. Young kelp plants (Macrocystis pyrifera) are capable of taking up ammonium at night. Ammonium levels in chambers containing both a blacksmith and a young kelp plant were significantly lower than in chambers containing only a fish, and ammonium levels dropped in ammoniumspiked chambers that contained kelp plants. Nighttime ammonium uptake rates by young kelp plants, which averaged 1.6 mol g-1 (dry) h-1, were only slightly lower than those during the day. Daytime excretion by blacksmiths occasionally results in elevated ammonium levels in the water column. On two of six days, ammonium concentrations in midwater foraging aggregations were slightly but significantly higher than in upcurrent controls; since blacksmiths typically aggregate at the incurrent margin of kelp beds, the ammonium is swept downcurrent and may be utilized by large M. pyrifera that extend through the water column. Thus, the activities of blacksmiths may results in the importation of extrinsic, inorganic nitrogen to primary producers on temperate reefs.  相似文献   

3.
The ultraplankton (cell diameters >3 μm), which compromises about 70% of the biomass of phytoplankton in subtropical surface waters near Oahu, Hawaii, was isolated for growth rate studies. The specific growth rate (μ) was estimated from the rate of increase of the chlorophyll biomass during incubations in the absence of grazers. This growth rate of the ultraplankton ranged from 0.037 to 0.071 h?1 (=1.3 to 2.5 doublings d?1) during a period when P:B ratios of 5 to 14.5 μg C μg?1 chl a h?1 prevailed. The co-occurrence of atypically high P:B ratios and nonlimiting ambient nutrient concentrations suggests that the calculated values are higher than those characteristic of such subtropical ecosystems in general. Rates of ammonium uptake and photosynthesis by the >3 μm fraction were also compared to those of larger fractions. Organisms in the >3 μm fraction assimilated NH 4 + at a rate which was about 75% greater than that of the 3 to 20 μm size fraction. Comparison of μ and P:B data collected over a 2 mo period (November–December, 1980) shows that the correlation between these two rate indices is nonlinear. The predominance of small-celled phytoplankton in oligotrophic waters is explained, in part, by its higher μ, its higher nutrient assimilation rates, and the absence of its loss through sedimentation.  相似文献   

4.
Growth rates of anchovy larvae, Engraulis mordax, reared for 19 days under constant environmental conditions on a diet of laboratory-cultured organisms, exceeded the growth rates of anchovies fed on a diet of wild plankton. The rotifer Brachionus plicatilis was found to be a nutritous food source when fed to the larvae in concentrations of 10 to 20/ml and in combination with the dinoflagellate Gymnodinium splendens (100/ml). Optimum conditions were determined for mass culture of the rotifer. A high food concentration was the most important parameter needed to assure a high yield of rotifers. Large volumes (464 I) of the unicellular flagellate Dunaliella sp. were cultured for feeding the rotifers. The rotifer culture technique described produces approximately 2.5×106 organisms/day, providing a reliable food source for rearing studies. The lengths of B. plicatilis (without eggs) ranged between 99 and 281 , most rotifers being larger than 164 and less than 231 . Individuals weighed 0.16 g and contained 8×10-4 cal.  相似文献   

5.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

6.
The life-history of the crown-of thorns starfish (Acanthaster planci) includes a planktotrophic larva that is capable of feeding on particulate food. It has been proposed, however, that particulate food (e.g. microalgae) is scarce in tropical water columns relative to the nutritional requirements of the larvae of A. planci, and that periodic shortages of food play an important role in the biology of this species. It has also been proposed that non-particulate sources of nutrition (e.g. dissolved organic matter, DOM) may fuel part of the nutritional requirements of the larval development of A. planci as well. The present study addresses the ability of A. planci larvae to take up several DOM species and compares rates of DOM uptake to the energy requirements of the larvae. Substrates transported in this study have been previously reported to be transported by larval asteroids from temperate and antarctic waters. Transport rates (per larval A. planci) increased steadily during larval development and some substrates had among the highest mass-specific transport rates ever reported for invertebrate larvae. Maximum transport rates (J max in) for alanine increased from 15.5 pmol larva–1 h–1 (13.2 pmol g–1 h–1) for gastrulas (J max in=38.7 pmol larva–1 h–1 or 47.4 pmol g–1 h–1) to 35.0 pmol larva–1 h–1 (13.1 pmol g–1 h–1) for early brachiolaria (J max in just prior to settlement=350.0 pmol larva–1 h–1 or 161.1 pmol g–1 h–1) at 1 M substrate concentrations. The instantaneous metabolic demand for substrates by gastrula, bipinnaria and brachiolaria stage larvae could be completely satisfied by alanine concentrations of 11, 1.6 and 0.8 M, respectively. Similar rates were measured in this study for the essential amino acid leucine, with rates increasing from 11.0 pmol larva–1 h–1 (or 9.4 pmol g–1 h–1) for gastrulas (J max in=110.5 pmol larva–1 h–1 or 94.4 pmol g–1 h–1) to 34.0 pmol larva–1 h–1 (or 13.0 pmol g–1 h–1) for late brachiolaria (J max in=288.9 pmol larva–1 h–1 or 110.3 pmol g–1 h–1) at 1 M substrate concentrations. The essential amino acid histidine was transported at lower rates (1.6 pmol g–1 h–1 at 1 M for late brachiolaria). Calculation of the energy contribution of the transported species revealed that larvae of A. planci can potentially satisfy 0.6, 18.7, 29.9 and 3.3% of their total energy requirements (instantaneous energy demand plus energy added to larvae as biomass) during embryonic and larval development from external concentrations of 1 M of glucose, alanine, leucine and histidine, respectively. These data demonstrate that a relatively minor component of the DOM pool in seawater (dissolved free amino acids, DFAA) can potentially provide significant amounts of energy for the growth and development of A. planci during larval development.  相似文献   

7.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

8.
Broad beans (Vicia faba L.), cultured hydroponically were supplied with 100 g mL–1 copper or 50 g mL–1 cadmium in nutrient solution. Samples of plant material from both nutrient regimes were analysed before and after infestation by the black bean aphid (Aphis fabae Scop.). Heavy aphid infestation resulted in a significant reduction in copper content of shoots in comparison with uninfested plants. A similar, but less well- defined, situation occurred in the case of cadmium.Further investigations examined the effects of different levels of aphid infestation on the above phenomena. In all cases the presence of feeding aphids reduced elemental accumulation in plant shoots. Long term infestation with population densities as low as three adult aphids showed a reduction in shoot copper and cadmium content.  相似文献   

9.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

10.
In situ rates of filtration, particulate ingestion, and carbon ingestion of deep-sea benthic boundary-layer zooplankton were determined in December 1984 in the Santa Catalina Basin, at 1 300 m depth in the California Borderland, by a short-term radioisotope-incorporation technique. Zooplankton were collected at 1 or 50 m above the bottom with an opening-closing net system on a submersible, and incubated at depth with labelled amino acids in special cod-end chambers. Concentrations of particulate material and particulate organic carbon in the ambient water were also measured. The zooplankton had a median weight-specific filtration rate of 12.4 ml (mg dr. wt)-1 h-1 and a median carbon ingestion rate of 5.4 g C (mg dr. wt)-1 h-1. Filtration rates were not significantly different from those in similar experiments in the north Atlantic at 2 175 m depth or Narragansett Bay in the winter, although the medians of the deep-sea experiments were lower than for the Bay. In the Santa Catalina Basin, rates from experiments at 1 m above the bottom in more turbid water were not significantly different from those at 50 m above the bottom in clearer water. These deep-sea benthic boundary-layer zooplankton may have the potential to respond to food pulses, and their relatively high ingestion rates suggest that they could have significant effects on particulate, chemical, and bacterial processes in the near-bottom water column.  相似文献   

11.
The hypothesis that lower retention efficiencies of filter-feeding copepods for small particles should result in different ingestion rate versus food concentration curves for different-sized foods was tested using Temora longicornis (Müller) fed natural phytoplankton. The copepods were fed different natural phytoplankton assemblages, which varied in their species and size distribution. Volume ingestion rates were an asymptotic function of food concentration, with maximum ingestion rates measured at food concentrations exceeding 5 to 10x 106 m3 ml-1, which were less than those occurring in the natural waters in which the copepods and phytoplankton were collected. Maximum volume ingestion rates increased linearly by a factor of 3.5, as the diameter of the particle forming the peak in the food size distribution increased fron 5 m (primarily microflagellates) to 30 m (mostly large diatoms). These results suggest that natural and pollutant-induced size reductions in natural phytoplankton could markedly decrease the volume of food consumed by filter-feeding copepods.Contribution No. 243 of the Marine Sciences Research Center  相似文献   

12.
S. Yamochi  T. Abe 《Marine Biology》1984,83(3):255-261
The ecological role of diel vertical migration of Heterosigma akashiwo Hada to initiate red tide was investigated in Tanigawa Fishing Port and Sano Harbor, Osaka Bay, Japan during red tide seasons in 1979 and 1980. This species migrated toward the surface early in the morning at a velocity of 1.0 to 1.3 m h-1. Downward migration was found in the afternoon, and more than 2.0×103 cells ml-1 aggregated in the bottom layer at night. The upward migration started before sunrise and downward shifting occurred prior to sunset. The movement is presumably associated with circadian rhythm, which is known as one of the biological periodicities. H. akashiwo crossed steep temperature and salinity gradients (6.5°C and 5.7 S) during the diel vertical migration. High values of particulate organic carbon and nitrogen concentrations were obtained in dialysis bags suspended in situ at identical layers with high cell concentration, while the values for surface and bottom bags were comparatively low. The results reveal that H. akashiwo migrates toward the sea surface to carry out photosynthesis effectively, and to the bottom to utilize nutrients efficiently.  相似文献   

13.
Adult Elasmopus rapax, collected from the eastern coast of Venezuela in 1990, were exposed to seawater containing various CdCl2 concentrations ranging from 0.25 to 5.5 mol l-1. The 48-h and 96-h LC50 values obtained were 4.0 and 1.6 mol Cd l-1, respectively. In amphipods exposed to 1 mol Cd l-1 for up to 240 h, the apparent rate of cadmium uptake was higher in dead animals (most of which had molted during the preceding 24 to 48 h) than in those which survived throughout the treatments without molting. Thus, whole-body cadmium content reached 1.74 mol g-1 dry weight (dw) in the former and only 0.85 mol g-1 dw in the latter; the higher body Cd-load may have caused the increased mortality observed in molters. On exposure to cadmium levels above 0.5 mol l-1 the oxygen consumption rate of non-molters decreased from 2.2 to about 1.5 ml O2 g-1 dw h-1 over the first 24 h, remaining unchanged thereafter. The results place E. rapax among the most sensitive marine organisms yet studied concerning cadmium toxicity, and emphasize the usefulness of the Amphipoda as bioindicators and research tools for bioassays.  相似文献   

14.
Macrofauna living on subtidal rocks reefs in southern California excrete ammonium, a potentially important nutrient for benthic algae. Ammonium excretion rates of eleven macroinvertebrate and five fish taxa were determined from a total of 324 in situ incubations conducted between October 1984 and August 1985 at 14 to 17 m depths off Santa Catalina Island, California. Total ammonium excretion ranged from over 100 mol h-1 by the kelp bass Paralabrax clathratus to less than 0.1 mol h-1 by the gastropod Conus californicus. Weight-specific ammonium excretion generally ranged from 0.5 to 4 mol g-1 h-1 in invertebrates and from 3 to 7 mol g-1 h-1 in fishes. Intraspecific excretion rates varied substantially. Coefficient of variation of excretion rates were higher than reported for laboratory studies and multiple regression indicated that 50 to 90% of the variation in ammonium excretion rates of five species studied in detail could not be explained by the combined variation in dry weight, water temperature, time of day, and incubation dates. The excretion data, along with estimates of population densities and size-frequency distributions, indicate that benthic macrofauna release a total of 25 to 30 mol NH 4 + m-2 h-1 both day and night. The species that generally make the largest contributions are a gobiid fish (Lythrypnus dalli), followed by three gastropods (Astraea undosa, Tegula eiseni, and T. aureotincta) and a sea urchin (Centrostephanus coronatus). The amount of ammonium excreted by these macrofauna on rocky reefs is insignificant compared to our previously published data on the nighttime excretion of blacksmith (Chromis punctipinnis), a pomacentrid fish that feeds in the water column during the day and shelters on the reef at night. Including blacksmiths, we estimate that the amount released by rocky-reef macrofauna at night is >280 mol m-2 h-1, a rate that is similar to that for many other marine communities. Additional studies are required to determine if benthic algae utilize ammonium released by these macrofauna, especially at night.Contribution No. 58 of the Ocean Studies Institute; Contribution No. 123 of the Catalina Marine Science Center  相似文献   

15.
J. Kuprinen 《Marine Biology》1987,93(4):591-607
Primary productivity and respiration of the overall plankton community and of ultraplankton (organisms passing through a 3-m Nuclepore filter) were studied at the entrance to the Gulf of Finland during the growth season in 1982. Data of the respiration measurements from previous years are also presented. During the development of a diatom spring bloom, the algal component could be successfully separated from the bacterial component by size fractionation with a 3-m Nuclepore filter and thus the algal respiration could be approximated, being on the order of 10 to 20% of the gross production. After the phytoplankton spring maximum, bacteria played an important role in mediating the energy flow from phytoplankton exudates to higher trophic levels. Maximum values of 1 230 and 740 mg O2 m-2 d-1 were recorded for overall and for ultraplankton respiration, respectively, during late July. High productivity values coupled with low phytoplankton biomass and low inorganic nutrient values were also recorded in late July, indicating effective nutrient regeneration and rapid turnover of the plankton community. During late summer, a considerable fraction (over 30%) of phytoplankton production was released as exudates, suggesting that much of the energy is channeled to higher trophic levels via bacterial pathways rather than by direct herbivorous grazing during this season. The summer development of phytoplankton community structure and functioning is strongly controlled by hydrographic conditions, i.e. by nutrient inputs via upwelling and by water temperature. A carbon budget for late summer indicated that bacteria may contribute only up to 50% of the overall respiration of the plankton community, which suggests that heterotrophs other than bacteria play an important role in nutrient regeneration. The present study stresses the importance of energy flow via the phytoplankton exudatebacteria-micrograzer pathway in relatively oligotrophic, brackish water ecosystems.  相似文献   

16.
A technique for measuring rates of RNA and DNA synthesis in sedimentary microbial communities has been adapted from methods developed for marine and freshwater microplankton research. The procedure measures the uptake, incorporation and turnover of exogenous [2, 3H]-adenine by benthic microbial populations. With minor modification, it is applicable to a wide range of sediment types. Measurement of nucleic acid synthesis rates are reported from selected benthic marine environments, including coral reef sediments (Kaneohe Bay, Oahu, Hawaii), intertidal beach sands (Oahu and southern California) and California borderland basin sediment (San Pedro Basin), and comparisons are made to selected water-column microbial communities. Biomass-specific rates of nucleic acid synthesis in sediment microbial communities were comparable to those observed in water-column assemblages (i.e., 0.02 to 2.0 pmol deoxyadenine incorporated into DNA [ng ATP]-1 h-1 and 0.2 to 8.9 pmol adenine incorporated into RNA [ng ATP]-1 h-1). DNA synthesis rates were used to calculate carbon production estimates ranging from 2 g C cm-3 h-1 in San Pedro Basin sediment (880 m water depth) to 807 g C cm-3 h-1 in coral reef sediment from the Kaneohe Bay. Microbial community specific growth rate, (d-1), estimated from DNA synthesis rates in surface sediments ranged from 0.1 in San Pedro Basin to 4.2 in Scripps Beach (La Jolla, California) intertidal sand.  相似文献   

17.
Michaelis-Menten uptake kinetics were observed at all light intensities. With constant illumination, the Vmax and K1 in nitrate uptake over the natural light intensity range of 0 to 2000 E were 0.343 g-at NO3–N(g)-1 at protein-N h-1 and 26 E, respectively. Nitrate uptake was inhibited at higher light intensities. The Ks for nitrate uptake did not vary as a function of light intensity remaining relatively constant at 0.62 g-at NO3–N 1-1. With intermittent illumination, the Vmzx for light intensity in nitrate uptake over a light intensity range of 0 to 5000 E was 0.341 g-at NO3–N(g)-1-at protein-N h-1. No inhibition of nitrate uptake was observed at higher than natural light intensities. Chaetoceros curvisetus will probably never experience light inhibition of nitrate uptake under natural conditions.  相似文献   

18.
Feeding, respiration and growth rates of oyster (Ostrea edulis L.) larvae reared at five food levels were measured throughout the entire larval period. Energy budgets were derived as a function of alga (Isochrysis galbana Parke) food concentration. Ingestion rate (IR, cells h-1) and oxygen consumption rate ( , nl h-1) were almost isometric functions of larval size [ash-free dry weight, (AFDW, g)], characterized by the equations: IR=803.9 AFDW1.13 and =4.85 AFDW1.09. Ingested ration was directly correlated to cell concentration up to a maximum at 200 cells l-1, with further increases failing to support higher ingestion rates. Likewise, growth rate linearly increased with food ration up to 100 cells l-1 (max. growth efficiency,K 1=25%) and reached a maximum at 200 cells l-1 (growth rate=5.6 m d-1), with further increases in food not supporting significantly faster growth. Maintenance ration was 2 to 3% daily dry weight (DW); optimum ration increased during larval development from 5 to 20% DW; maximum ration was 20% DW. During larval rearing, an increasing feeding schedule of 50, 100 and 200 cells l-1 from Days 0, 5 and 10, respectively, is recommended.  相似文献   

19.
A method is described for the incubation of undisturbed sediment cores under in situ conditions with the addition of low concentrations of 14C-glucose. Data are presented for respiration, gross uptake and actual uptake rate of glucose by bacteria in sandy, wave-washed beaches of the Baltic Sea. On the average, the bacteria respired 8% of the total glucose taken up. The gross uptake measured was between 2.3×10-3 and 6.8×10-3 g 14C-glucose g sediment-1 (dry weight) h-1 (average 4.7×10-3 g g-1 h-1). Minima in the gross uptake rate corresponded with maxima in the concentration of natural free dissolved glucose. For the actual uptake rate, however, very similar uptake rates were calculated for the sediments examined (between 1.4×10-1 and 1.9×10-1 g glucose g-1 h-1, average 1.7×10-1 g g-1 h-1).Publication No. 183 of the Joint Research Program at Kiel University (Sonderforschungsbereich 95 der Deutschen Forschungsgemeinschaft).  相似文献   

20.
From November 1980 to February 1981 the concentration of oxygen dissolved in the surface mixed layer of the oligotrophic Caribbean Sea off Curaçao was quite constant (420.77±1.98 g at l-1). However, immediately following enclosure in 4500-1 plastic bags reaching to a depth of 5 m the oxygen concentration began to decrease, down to values below saturation (405 g at l-1) within 48 h. Autotrophic and heterotrophic nanoplankton cell numbers and algal pigments in bags remained constant or increased slightly during the first 24 h of enclosure. The rate of decrease in oxygen concentration in bags was significantly higher during daylight hours than in the night, which suggests that photo-oxidative processes were involved in the additional daytime loss of oxygen. The dramatic enclosure effect on the oxygen content of the water in the bags can be taken as evidence of the dependence of the oxygen concentration near the tropical ocean's surface on supply from below: in water freely circulating in the euphotic zone deviations from the mean oxygen concentration during a diurnal cycle were 0.47% at most, differential losses near the surface being counteracted through vertical exchange; while in water separated from the rest of the mixed layer in the plastic bags losses due to respiration of the enclosed plankton community plus an even greater loss, assigned to non-biological, photosensitized oxidation processes, were up to 10 g at O2 l-1 in 24 h. Although photo-oxidation is confined to the very surface the oxygen flux involved may be important enough to necessitate consideration of a photochemically induced loss factor in oxygen budget calculations, e.g. when primary production is to be estimated from diurnal oxygen curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号