首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
胡杰 《装备环境工程》2021,18(7):112-118
目的 给出多点激励振动试验中控制载荷的存在性判据,建立控制载荷分析的数值模拟方法.方法 从控制载荷数量与目标响应数量关系出发,通过传递函数矩阵及其增广矩阵的秩的大小关系比较,对多点激励振动环境试验中控制载荷的存在性进行研究,并针对当前多点激励试验中只控制多个点的幅值而不控制相互之间相位差的现状,对存在性结论进行修正,同时通过理论推导和数值优化算法,建立不同工况下控制载荷的分析方法.结果 对于同时控制响应幅值和相位的情况,当传递函数矩阵的秩Rc与其增广矩阵的秩Rz相同且为满秩时,控制载荷存在唯一解;当Rc=Rz但非满秩时,控制载荷不唯一;当Rc相似文献   

2.
目的用谱函数分析的方式,推导结构在两点激励下的随机振动响应的计算公式。方法通过互谱与相关系数的关系,讨论结构在两点激励下的响应特点。结果对于线性结构,不同相关系数的两点激励下结构激发的模态效果不同,随着相关系数的增大,结构的响应在相邻的谐振峰上,出现增大、减小交替出现的现象。结论相关系数对结构响应影响的特点,应该引起工程结构设计人员的重视。  相似文献   

3.
飞机外挂等细长体试件的两点激励振动试验方法在国内外已经开始较广泛应用。因试件动力学的复杂特性经常造成两点激励振动试验控制超差甚至无法控制,因此在试验前有必要对试件开展模态等动力学特性分析。针对某模拟外挂的试验件及试验夹具开展了有限元模态分析,在两点激励试验前对试验中容易出现控制超差的危险频率点进行了预判。随后开展的两点激励振动试验结果证明了预判的正确性以及试验前开展动力学分析的必要性。  相似文献   

4.
目的 研究某高超声速导弹飞行过程中的振动状态,获得导弹在给定压力载荷下的振动响应特性。方法结合有限元分析、随机振动理论,利用三维软件构建导弹有限元模型,并在Ansys Workbench平台对其进行模态分析及谐响应分析。基于模态分析结果,对导弹进行随机振动响应试验,探究导弹在频域及力学上的振动响应特征。结果 计算得出导弹前六阶固有频率和振型,获得导弹上一检测点在给定振动激励载荷下的加速度响应曲线,并得到导弹整体结构的应力分布云图。结论 导弹模型强度符合要求,导弹在振动激励载荷下的加速度响应峰值均出现在380~400Hz,应力极值出现在导弹尾部区域,在此区域内,导弹更易产生结构性损伤。在飞行器地面环境模拟试验中,应着重考虑此频域及位置的振动条件。  相似文献   

5.
目的明确细长体试件最合适的两点激励试验形式。方法针对某细长体试件的不同试验形式设计了不同的试验夹具,随后针对试件和夹具开展有限元模态分析,并进行两种形式的两点激励振动试验,研究细长体试件在两点激励振动试验中采用不同试验形式时的动力学响应差异。结果模态分析和试验结果表明,试件和夹具组合体在柔性悬挂方式下依然正确反应了试件本身的模态特性,而在夹具固定方式下模态特性却发生了明显改变。结论细长体试件的两点激励振动试验更适合采用柔性悬挂方式进行。  相似文献   

6.
多维激励下结构随机振动响应分析   总被引:3,自引:2,他引:1       下载免费PDF全文
基于随机振动方法,以谱函数分析的方式,给出了典型结构在多维激励下的振动响应计算公式。根据理论分析的结果,计算了多激励单轴向和多激励多轴向的算例。结果表明,对于线性结构,多维激励下结构振动的响应谱为轴向上各个激励点时响应谱的叠加,但由于各点激励下结构振动的振型函数不同,结构响应可能比单个激励点激励时响应大,也可能小;在一些情况下,结构响应会丢失反对称振型的响应。多维激励下振型函数对结构响应的影响,应该引起工程结构设计人员的重视。  相似文献   

7.
目的 形成自主再入飞行数值模拟预测技术.方法 采用模态叠加法开展自由结构的多点脉动压力激励随机振动响应分析,基于PANDA高性能力学分析平台进行并行实现研究,构建相应的求解模块.针对飞行器再入过程,基于自主研发的软件模块,分析飞行器自由状态的模态特性及其在实测脉动压力载荷下的振动响应,并与商业软件分析结果 进行比对.结...  相似文献   

8.
目的获取舰载飞机弹射过程中冲击动载荷在结构上的响应规律,以及前起落架和与其连接的机体主传力结构的动响应特性。方法基于多体系统动力学理论,建立描述舰载机弹射过程的刚柔耦合多体系统动力学模型,对弹射过程进行仿真分析。同时开展地面模拟弹射冲击试验,通过仿真和试验对照,重点研究牵制载荷突卸瞬间结构的动态响应规律。结果仿真和试验得到结构传力路径各点的加速度和应力响应数据,试验测得机体结构加速度峰值达到255g,而同位置的应力峰值为85 MPa,仿真和试验数据的趋势一致。结论牵制载荷突卸形成的冲击动响应峰值沿着结构传力路径衰减。航向加速度和应力响应峰值随着牵制释放载荷的增加而增加。虽然瞬态加速度峰值达到较高水平,但是瞬态作用机体结构的应力峰值不高,不足以造成结构失效。结构设计应重点关注弹射冲击响应峰值和振动疲劳的影响。  相似文献   

9.
研究总结了某型机载战术导弹服役过程中所经受的振动激励主要来源,同时研究分析不同激励方式对战术导弹吊耳载荷响应效果的影响,确定该型机载战术导弹振动载荷加载方案。采用理论计算与有限元建模计算分析的方法,分析比较不同激励方式对导弹吊耳载荷响应效果的影响。总结确定了该型机载战术导弹振动载荷的主要来源,通过理论算例和有限元建模计算的方法分别计算了不同激励方式下导弹吊耳的载荷响应,并最终确定了振动载荷加载激励方式。  相似文献   

10.
导弹运输环境的单轴振动台模拟试验技术   总被引:3,自引:2,他引:3  
简述了导弹运输环境的单轴振动模拟试验技术针对战术导弹特点建立平面解耦的导弹-贮运发射箱-运输车底板的离散化模型,给出了相应的用频响函数表示的多点响应与单点激励的关系式,采用跑车试验实测的弹体结构响应,求取单点激励载荷谱在最小二乘意义上的最优解,从而实现利用普通单轴振动台的单点激励进行导弹运输环境的试验室模拟。  相似文献   

11.
目的获得离心机静止及不同运行状态下的动态特性。方法通过离心机常规模态试验,采用SIMO识别方法,利用力锤产生瞬态激励,计算出激励点与响应点之间的频响函数,通过模态拟合,得到结构的模态参数(频率、阻尼和振型)。进行离心机工作模态试验,测量结构响应并经放大变换,选择2个以上参考点进行互谱分析,获得工作模态参数。结果离心机静止时前两阶模态为绕y轴和绕x轴偏摆,频率分别为3.23、9.94 Hz,本身一阶弯曲频率为11.17 Hz。不同转动加速度下,离心机一阶工作频率为转动频率;二阶工作模态振型为绕y轴偏摆,频率随着转速的升高而增大。结论通过模态试验分析,获得了该离心机静止及不同运行状态下的模态参数,可为有限元模型修正、结构设计及优化提供参考。  相似文献   

12.
目的细长体两点激振试验方案中,更好地选择激励位置、控制位置和悬挂点的位置。方法制定两点激振试验方案时需要参考试件的模态信息。结果根据试验方案的确定方法和模态试验理论,利用试件模型的模态试验结果,建立了一种试验方案制定时的激振位置、控制位置、悬挂位置计算方法,量化了试验方案的确定方法。结论通过两种试验方案控制位置、悬挂位置计算数值的对比,可以直观地对比不同试验方案的优劣,有利于两点激振试验方案的制定和选择。  相似文献   

13.
目的 研究具有工程实践意义的板壳组合结构在声振联合作用下的响应预测方法。方法 在噪声试验、振动试验和声振联合试验响应曲线的基础上,分析板壳组合结构在噪声和振动同时激励下的响应耦合规律,并根据噪声试验和振动试验的响应极值包络法,来预测在声振联合试验作用下板壳结构的响应分布。结果 声振联合试验响应曲线近似于噪声试验和振动试验的最大值包络线,噪声的面激励和随机振动的基础激励在不同的频率范围内对结构响应起着主要影响。试验件的噪声试验和振动试验响应曲线在给定的频率点出现相交,小于交越频率的声振联合试验响应与振动试验高度吻合,高于交越频率的响应则以噪声试验为主。结论 在工程实际中,可以直接利用振动试验和噪声试验的响应数据对声振联合试验的响应进行预测。由于交越频率难以事先获得,因此响应叠加法在实践中更易于实现。  相似文献   

14.
航空发动机叶片高应力振动疲劳试验技术研究   总被引:7,自引:3,他引:4       下载免费PDF全文
在电动振动台上对航空发动机叶片进行了高应力振动疲劳试验,详细研究了试验机理,提出了辅助点监测叶片最大振动应力、共振峰后定频率激励等试验方法,并成功利用振动台开环控制技术有效稳定了叶片的振动应力水平,从而获得可靠的疲劳数据。另外,从试验角度出发,对振动台激励与叶片振动应力响应之间的关系进行了研究。  相似文献   

15.
目的使用简谐激励替代随机平直谱激励进行振动疲劳试验。方法利用有限元仿真计算某典型铝合金试验件在简谐激励和随机平直谱激励下的疲劳寿命,分析2种工况下试验件寿命相等时激励的等效关系。进行一组定频激励试验和一组谱激励试验,对比试验结果,验证在某典型铝合金试验件上利用简谐激励替代随机平直谱激励进行振动疲劳试验的可行性。结果通过试验与仿真技术,对2024-T4铝合金试验件在一定频率非共振简谐激励和随机平直谱激励作用下的振动疲劳寿命规律进行研究,得出了不同激励作用下试验件寿命相同时载荷的等效关系。结论基于损伤等效,工程中可以使用简谐激励代替随机平直谱激励进行振动疲劳试验,从而解决了一类振动疲劳试验加载困难的问题,实现振动疲劳的试验加速。  相似文献   

16.
典型机载设备加速振动试验应用方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
目的为了提高加速振动试验方法在高新军用装备中工程化应用的准确性和可操作性。方法由于在合理的加速等级下,较大的振动能量可能导致试件局部振动疲劳累积损伤机理发生改变,因此在传统加速振动试验中充分评估结构试件的频率响应特性,得出一种修正的加速振动试验方法。首先结合计算机辅助分析手段对试件进行模态分析及频率响应分析,识别试件的薄弱部位。其次利用结构动力学特性测试手段,对薄弱部位的实测动态特性进行分析,并对超出加速响应限的加速度幅值进行修正。结果以典型的机载设备结构作为研究对象,将试件薄弱部位的频率响应幅值控制在合理的放大系数范围内,保证加速破坏机理的一致性,修改后加速振动试验结果与长周期正常等级振动试验结果特征一致。结论该方法符合国军标中振动试验方法的有关规定,可在装备研制过程中对设备结构部件的加速振动试验加以工程化应用。  相似文献   

17.
目的建立小样本情况下,通过试验及仿真结合求解PCB板在随机振动激励下的振动加速因子的方法。方法以疲劳累计损伤等效为研究基础,以PCB板为研究对象,通过实验室的动力学环境模拟试验,在施加相同谱型不同量级的随机激励载荷下的振动加速因子,并通过采用试验数据对仿真局部模型修正的方法得出PCB板在随机振动激励载荷下的振动加速因子。结果通过试验数据与仿真计算结果的对比,两种方法得出的振动加速因子的误差在5%以内,满足工程实践精度要求。且进一步的证实了该方法的可行性。结论对于不同种类的PCB板在进行小样本摸底试验及随机振动仿真计算的前提下,确定电路板产品的薄弱位置,之后通过疲劳仿真计算局部的疲劳寿命便可以求得一定精度要求下的振动加速因子。  相似文献   

18.
目的研究提高飞行器结构地面试验有效性的途径。方法计算同一被试件结构在飞行状态和地面试验状态下的有限元模型,测量地面试验状态下的模态以验证有限元模型的正确性;计算各特征点(也可以是遥测点)在天地状态下的响应,用机器学习法获取各特征点的映射关系模型;基于该模型由飞行点响应(或遥测数据)确定出地面试验件对应点的响应,并用载荷反求法得到它们的等效载荷;最终确定施加在试验系统上的载荷。结果以细长体结构为例,所得到由其组成试验系统的有限元模型与实测模型之间的固有频率最大相对误差为6.76%,利用映射关系模型预测出对应点在飞行状态下的振动响应。确定了飞行状态下结构响应的特征点,由地面试验系统所对应的响应点反推出应施加的载荷为60 N。结论利用天地数值计算-地面试验验证联合法,无需在地面试验状态下刻意模拟飞行状态的边界条件,确定出所需要施加的载荷,从而提高了飞行器地面试验的有效性。  相似文献   

19.
目的实现颤振试飞操纵面脉冲激励响应仿真,预测操纵面脉冲激励结构响应。方法提出一种飞机颤振试飞操纵面脉冲激励响应仿真方法。该方法以飞机结构动力学有限元模型为基础,建立颤振试飞气动力模型和操纵面脉冲激励力模型。结果以上述模型为基础建立的飞机颤振试飞操纵面脉冲激励响应仿真模型,实现了颤振试飞操纵面脉冲激励响应仿真。首先建立了带副翼单机翼模型操纵面脉冲激励响应仿真模型,并实现了激励响应仿真分析,得到了结构响应幅值。结论开展了全机模型操纵面脉冲激励响应仿真分析,并将仿真结果与飞行试验结果进行对比,两者结果基本一致,验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号