首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
目的通过数值模拟的方法探索定向钻穿越管道的阴极保护评价。方法根据一条5130 m长度的定向钻穿越管道的实际参数,基于CDEGS软件计算方法,应用涂层耐受电压与电流密度的关系,计算定向钻管道浅埋层和岩石层中的管道的电位分布。结果通过调整土壤分层电阻率参数及土壤分层厚度进行计算,得到了定向钻穿越管道在分层土壤电阻率条件下的阴极保护电位分布规律。结论明确了土壤电阻率是影响定向钻管道电位分布的主要因素,形成了基于定向钻管道两端阴极保护电位和土壤分层电阻率,推导了整条定向钻穿越管道的阴极保护电位分布情况的评价方法。  相似文献   

2.
目的研究三维地形下的并行管道干扰规律,提出降低并行管道干扰的合理措施。方法使用BEASY软件进行数值模拟,通过设置不同的涂层破损率、管道直径、土壤电阻率、输出电流等探究各参数对三维地形下并行管道干扰的影响规律。结果并行管道间存在干扰,相较于单根管道,在辅助阳极附近的管道阴极保护电位变小,其他位置处管道保护电位略有上升。随管道并行间距增加,干扰减弱。土壤电阻率越大,阳极输出电流越大,辅助阳极距管道距离越近,管道直径越小,并行管道间干扰越剧烈。结论对于独立设置阴极保护的并行管道,推荐管道并行间距大于80m;对于联合阴极保护的并行管道,推荐管道并行间距小于7 m。  相似文献   

3.
目的 分析兰成渝成品油管道某管段绝缘接头漏电失效的原因以及对阴极保护有效性产生的影响.方法 通过电位测量、电阻测试、漏电率测试等方法对管道阴极保护系统中恒电位仪、绝缘接头绝缘性能等进行检测.对该管段进行阴极保护输出、绝缘接头两端电位等参数的返场调研检测,对绝缘接头失效部位管内腐蚀产物成分及形貌进行表征.结果 恒电位仪在...  相似文献   

4.
陵水气田输气管道阴极保护效果数值仿真研究   总被引:1,自引:1,他引:0  
目的 研究海水环境因素和工况因素对其海底管道的牺牲阳极阴极保护效果。方法 针对国内首个自主知识产权深水平台——陵水平台,基于边界元开展管道的阴极保护仿真计算,重点研究不同涂层破损率、海水流速和海水电导率对其管道牺牲阳极阴极保护效果的影响。结果 涂层破损率从1%增加到10%,同样的牺牲阳极保护方案,管道的最正阴极保护电位增加了102 mV;海水电导率从4 S/m减小到2 S/m,管道的最正阴极保护电位增加了10 mV;海水流速从0 m/s增加到4 m/s,管道的最正阴极保护电位增加了26 mV。结论 涂层破损率增大、海水电导率降低、海水流速增加等都会导致阴极保护效果的降低,因此在设计阶段,需要考虑环境工况因素对阴极保护效果的影响,确保达到合理的阴极保护效果。  相似文献   

5.
目的 研究地铁系统运行状态多变性导致地铁杂散电流对埋地管道的干扰规律.方法 构建具有多个牵引区间、排流网、地铁站接地系统及停车场的地铁系统,埋地管道及其阴极保护系统等模型,基于数值模拟方法,采用专业软件计算地铁机车数量、位置及牵引电流变化,地铁排流网、站内接地系统和停车场与线路轨道电导通状况等地铁运行状态变化下轨道对地...  相似文献   

6.
针对某输油管道工程,为保障阴极保护效果的同时,减少阴极保护对周边金属构筑物产生直流杂散电流的干扰。结合现有相关标准规范以及阴极保护干扰的产生机理,对深井阳极的布置位置和阴极保护方案进行对比分析。由于该工程输油管道将分输库整体包围,如库外长输管道全部采取外加电流的阴极保护形式,无论阳极井如何布置,阴极保护电流均有可能对分输库内储罐等金属构筑物产生杂散电流干扰,此时阳极井的位置需从施工、维护、保护电流的发散以及投资等方面比选确定。为了实现外输管道得到有效保护,且最大程度减小阴极保护电流对分输库内储罐等金属构筑物的干扰,可采取对由分支点进出库区的成品油管道与干线绝缘,并对该部分管道施加牺牲阳极保护的形式。  相似文献   

7.
基于油气管道基带斩波数据传输系统的技术特点,将其应用在管道的数据传输与管道运行参数的检测中。在中洛输油管道部分管段进行了数据采集、远传与便携参比测试对比,结果表明:该技术不仅可实现不间断实时监测管道电位,还能准确测量出更具参考价值的管道极化电位,有助提高管道阴极保护水平。管道管理人员可随时掌控管道阴极保护的真实情况,及时对欠保护和过保护管段进行维护和整改。  相似文献   

8.
城市排水管道内污染物迁移转化规律研究进展   总被引:1,自引:2,他引:1       下载免费PDF全文
城市排水管道内污染物随水流沿程降解转化,是造成管道腐蚀、有毒有害气体产生的重要原因,掌握污染物的迁移转化规律,对于优化排水系统运行、改善管网周边环境具有重要意义.在阐述污水和沉积物两相污染特性的基础上,着重综述了管道内污染物的迁移转化规律:①常量污染物(如氮、磷、硫)在管道内好氧-厌氧交替的条件下沿程降解释放,微量污染物难以完全降解,多发生形态结构变化或由水相向沉积相中迁移.②管道生物膜对污染物的降解转化起主导作用,管道内高基质浓度环境和水流冲刷作用为生物膜稳定状态的维持创造了有利条件.③污染物迁移过程中,气体的产生受有机物浓度、温度、水力停留时间及流速的影响,应结合管道内实际污染物的组成情况采用相应的有害气体控制措施.在污染物迁移转化规律研究中,模型模拟是重要的研究方法,现有模型多从生化反应过程和水力学的角度切入,随着人工智能等新兴技术逐渐应用于管道建模,模型的精确度不断提高.建议今后加强污染物在管道内污水、沉积物、空气三相间迁移转化规律的研究,尤其是针对微量污染物的研究应广泛开展;在实际应用中,应在全面分析管道内污染特性的基础上,实施针对性的污染物抑制策略,建立符合本地特征的污染物迁移转化模型.   相似文献   

9.
目的研究不同管径海水管道在静态及不同海水流速环境中外加电流系统棒状辅助阳极对管道内部腐蚀防护的规律。方法模拟海水管道实海环境,对管道施加棒状辅助阳极外加电流阴极保护,连续测定管道不同部位保护电位,由此得到防护规律。结果静态试验中,随管径变小,最大保护距离越短,当管径直径≤100 mm时,棒状辅助阳极基本起不到保护作用,不适宜用此种方法保护。动态试验中,同一管径的管道,流速越大,保护效果越差,但影响不大,流速在2~4 m/s之间保护距离差异不大;不同管径,仍如静态实验结果相似,随管径变小,保护距离越短。结论棒状辅助阳极在海水管道中的保护距离有限,且不适合小管径管道,要想提供管道长距离稳定的保护效果需考虑其他方式。  相似文献   

10.
目的 研究交流杂散电流干扰下管线钢的腐蚀机理.方法 采用电化学阻抗谱(EIS)、动电位极化扫描(Tafel)等电化学测试技术和表面分析技术研究不同交流电流密度干扰下(0~80 A/m2)X80管线钢在酸性土壤环境中的腐蚀行为.结果 酸性土壤环境中,即使是10 A/m2的交流电流密度,也会引起X80的交流腐蚀,且钢的腐蚀...  相似文献   

11.
目的 提出一种判别交流干扰腐蚀风险的方法。方法 根据现场测试参数、土壤理化性质参数及室内模拟腐蚀试验,运用灰色关联分析和三角模糊层次分析,将长输油气管道沿线土壤环境和沿线阴极保护状态等因素与交流干扰腐蚀相结合,确定影响交流干扰腐蚀各关键因素的贡献权重。结果 参考现行土壤腐蚀性以及交流干扰评价的标准,将土壤腐蚀性、交流干扰电流密度、防腐层破损面积以及运行年限进行综合考虑,建立了一种融合交流干扰及土壤腐蚀性评价的交流干扰腐蚀风险识别方法。结论 通过现场应用,该方法评价结果与管道内检测结果一致。  相似文献   

12.
海水管路冲刷腐蚀数值模拟研究现状   总被引:1,自引:2,他引:1  
分析了海水管路冲刷腐蚀主要影响因素,总结了国内外学者在海水管路冲刷腐蚀数值模拟方面的研究成果,并在此基础上对海水管路冲刷腐蚀数值模拟研究方向作出了展望。随着计算流体力学的发展,有效地结合试验数据与数值模拟对海水管路冲刷腐蚀现象进行研究,可以更好地预测海水管路冲刷腐蚀发生的部位及腐蚀速度。  相似文献   

13.
光电化学阴极保护的原理及研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
简要介绍了光电化学阴极保护技术的基本原理以及其影响因素,总结了历年来该方面的主要研究成果,并简要地介绍了笔者课题组在光电化学阴极保护方面的部分工作。最后,对光电化学阴极保护技术进一步的发展以及应用进行了展望。  相似文献   

14.
介绍了海洋腐蚀环境的特点,分析了钢结构焊接接头的腐蚀特性。在此基础上,总结了国内外学者关于焊接接头在海洋环境下的腐蚀机制和影响因素等研究成果,明确了焊接接头以电偶腐蚀、应力腐蚀和腐蚀疲劳为主导的电化学腐蚀行为。针对钢结构焊接接头的海洋腐蚀防护要求,总结了当前主要的腐蚀防护方案,如添加合金元素、焊接工艺优化、热处理、表面强化和防腐涂层等。最后,综合当前钢结构焊接接头海洋腐蚀与防护研究现状,提出了在海洋实际工况验证和防护手段不足等方面的问题。  相似文献   

15.
目的落实油气管道定期检验工作,确保管道安全平稳运行,方法通过对西南管道公司所辖某天然气管道进行外腐蚀直接检测,包括管线敷设环境调查、防腐层状况不开挖检测、管道阴极保护有效性评价检测以及开挖直接检验。根据检测结果进行合于使用评价,包括应力分析计算、剩余强度评估、管道剩余寿命预测等。结果管道允许使用,再评价间隔5年。结论直接检测方法采用多种检测手段对管道外腐蚀情况和防腐保护系统进行管道全面检验,并出具合于使用评价,是一种综合的完整性评价方法,符合法定检验的要求,其评价结果可作为管道完整性管理的可靠依据,可据此制定管道的维修方案和预防措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号