首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two polycyclic aromatic hydrocarbon (PAH) compounds (benz(k)fluoranthene and fluoranthene) and two heavy metals (cadmium and lead) were studied on the alkaline phosphatase (ALP) enzyme activity and hematocrit (PCV) values in chick fetuses. Eggs were exposed to one of the four compounds before incubation, by applying two exposure methods: injection (into the air cell) or immersion. Fluoranthene, cadmium and lead injection significantly decreased ALP activity compared to the control, while none of the compounds caused significant reduction in ALP activity in the immersion groups; however, a decreasing tendency was seen in these groups as well. Hematocrit values were increased after benz(k)fluoranthene immersion, fluoranthene immersion and cadmium injection. However, the doses in this study are relatively low (compared to other ecotoxicological studies in birds), the alteration in ALP enzyme activity and PCV values was apparent in each treatment group and is indicative of the high sensitivity of chick fetuses.  相似文献   

2.
Water solubilities (SW) determined by the HPLC generator column method are reported for a series of chlorinated dibenzo-p-dioxins (PCDDs) with SW ranging from 0.4 ng/L (ppt) for octa-chlorodibenzo-p-dioxin to 430 ng/L for 1,2,3,7-tetrachlorodibenzo-p-dioxin at 20°C. A correlation is demonstrated between SW and HPLC capacity factors (k′) for these extremely hydrophobic compounds, allowing calculation of SW of PCDDs from k′ and melting point data.  相似文献   

3.
Observation of diurnal cycles in atmospheric concentrations of reactive alkenes are reported from measurements performed at a North Atlantic coastal site (Mace Head, Eire 53°19′34″N; 9°54′14″W). Species seen to exhibit distinct cycles included isoprene, ethene, propene, 1-butene, iso-butene and a substituted C6 alkene. Five hundred and thirty air mass classified measurements were performed over a 4 week period at approximately hourly frequency and demonstrate that during periods when air flow resulted from unpolluted oceanic regions a clear daily cycle in concentrations existed, peaking at around solar noon for all species. These observations support the proposed mechanism of production via photochemical degradation of organic carbon in sea water. The observed concentrations showed strong correlation (propene R2>0.75) with solar flux, with little relationship to other meteorological or chemical parameters. The species’ short atmospheric lifetimes indicate that the source of emission was from local coastal waters within close proximity of the sampling site. At solar noon concentrations of reactive alkenes from oceanic sources were responsible for up to 88% of non-methane hydrocarbon reaction with the hydroxyl radical at this coastal marine site.  相似文献   

4.
An investigation has been made of the suitability of a nondispersive infrared analyzer and two flame-ionization analyzers for measuring the total hydrocarbon concentrations of automobile exhaust gas. The investigation consisted of measuring relative responses of various hydrocarbons, checking for possible exhaust gas interferences and finally comparing exhaust hydrocarbon concentrations indicated by the flame-ionization analyzer to those indicated by the infrared analyzer. The infrared analyzer has high relative responses for parraffins and low responses for olefins, acetylenes, and aromatics. Also, the infrared indicated hydrocarbon concentrations must be corrected for exhaust water vapor interference. When the flameionization analyzers are operated at conditions that result in approximately uniform response to hydrocarbons and low oxygen interference, the exhaust hydrocarbon concentrations indicated by either flameionization analyzer are better approximations of the total hydrocarbon concentration than those indicated by the infrared analyzer.  相似文献   

5.
Dennis R. Peterson 《Chemosphere》1994,29(12):2493-2506
For acute toxicity to aquatic organisms, individual hydrocarbons are equally toxic on the basis of their internal molar concentration within the organism. The differences in measured toxicities among hydrocarbons lies with differences in their equilibrium partitioning behavior between water and the organism. For complex hydrocarbon mixtures, an additional complication of partitioning between the bulk hydrocarbon and the water is encountered. Equations are developed for calculating the water concentration of components of complex hydrocarbon mixtures. Using gasoline as an example, a method is presented for first calculating the concentration of gasoline components in water after equilibration with different gasoline volumes and then, the component toxicities are used to estimate the gasoline volume causing 50% mortality to aquatic organisms.  相似文献   

6.
The 6-month assessment of the oil spill impact in the Rio de la Plata described in the preceding paper [Colombo, J.C., Barreda, A., Bilos, C., Cappelletti, N., Demichelis, S., Lombardi, P., Migoya, M.C., Skorupka, C., Suarez, G., 2004. Oil spill in the Rio de la Plata estuary, Argentina: 1 - biogeochemical assessment of waters, sediments, soils and biota. Environmental Pollution] was followed by a 13- and 42-month campaigns to evaluate the progress of hydrocarbon decay. Average sediment hydrocarbon concentrations in each sampling include high variability (85-260%) due to contrasting site conditions, but reflect a significant overall decrease after 3 years of the spill: 17 +/- 27, 18 +/- 39 to 0.54 +/- 1.4 microg g(-1) for aliphatics; 0.44 +/- 0.49, 0.99 +/- 1.6 to 0.04 +/- 0.03 microg g(-1) for aromatics at 6, 13 and 42 months, respectively. Average soil hydrocarbon levels are 100-1000 times higher and less variable (61-169%) than sediment values, but display a clear attenuation: 3678 +/- 2369, 1880 +/- 1141 to 6.0 +/- 10 microg g(-1) for aliphatics and 38 +/- 26, 49 +/- 32 to 0.06 +/- 0.04 microg g(-1) for aromatics. Hydrocarbon concentrations modeled to first-order rate equations yield average rate constants of total loss (biotic+abiotic) twice as higher in soils (k = 0.18-0.19 month(-1)) relative to sediments (0.08-0.10 month(-1)). Individual aliphatic rate constants decrease with increasing molecular weight from 0.21 +/- 0.07 month(-1) for isoprenoids and n-C27, similar to hopanes (0.10 +/- 0.05 month(-1)). Aromatics disappearance rates were more homogeneous with higher values for methylated relative to unsubstituted species (0.17 +/- 0.05 vs. 0.12 +/- 0.05 months(-1)). Continued hydrocarbon inputs, either from biogenic (algal n-C15,17; vascular plant n-C27,29) or combustion related sources (fluoranthene and pyrene), appear to contribute to reduced disappearance rate. According to the different loss rates, hydrocarbons showed clear compositional changes from 6-13 to 42 months. Aliphatics disappearance rates and compositional changes support an essentially microbiologically-mediated recovery of coastal sediments to pre-spill conditions in a 3-4 year period. The lower rates and more subtle compositional changes deduced for aromatic components, suggest a stronger incidence of physical removal processes.  相似文献   

7.
稠油高效降解菌的降解特性及其应用   总被引:2,自引:0,他引:2  
以稠油为唯一碳源,对细菌B0501、B0505和B0510的降解特性进行了分析,结果表明3株菌对稠油的不同组分具有不同程度的降解能力,其中B0505对烷烃、B0510对芳香烃以及B0501对胶质和沥青质的去除率较高,分别为42.26%、35.30%和40.76%;混合菌协同作用强化了稠油组分的降解,3株菌株组合对烷烃、芳香烃以及胶质沥青质的降解率分别达到44.23%、38.56%和62.12%;微生物对稠油降解过程符合一级动力学方程,其中3株菌株组合对稠油降解的速率最快,半衰期(t1/2)为5.36 d。将微生物应用于稠油废水处理实践,结果表明外源微生物的投加强化了废水中COD的去除率;GC-MS图谱及降解前后有机成分分析进一步佐证了微生物对稠油废水中有机成分的降解能力。  相似文献   

8.
We investigated the potential of an aerobic polycyclic aromatic hydrocarbon (PAH)-adapted consortium to degrade phenanthrene in soil. Optimal degradation conditions were determined as pH7.0 and 30 degrees C with a water content of 100% wt soil/wt water (w/w). At a concentration of 5 microg/g, phenanthrene degradation (k1) was measured at 0.0269 l/hr with a half-life (t(1/2)) of 25.8 hrs. Our results show that the higher the phenanthrene concentration, the slower the degradation rates. Phenanthrene degradation was enhanced by treatment with yeast extract, glucose, or pyruvate, but was not significantly improved by the addition of acetate. Degradation was delayed by the addition of either compost or potassium nitrate and enhanced by the addition of nonionic surfactants (Brij30, Brij35, Triton X100 or Triton N101) at critical micelle concentration (CMC). Phenanthrene degradation was delayed at levels above CMC.  相似文献   

9.
Fingerprinting of hydrocarbon products requires high resolution differentiation of individual hydrocarbon compounds in any mixture. This requires the applications of various measuring techniques. In this paper, we have chosen the heavy hydrocarbons in fuels, lubricants and paving material as examples to discuss the methods for chemical characterization and differentiation. In the category most frequently termed "semi-volatile hydrocarbons" with boiling points from about 500°F to 1200°F or higher, there are several families of hydrocarbons, both natural and refined that are not easily distinguished by conventional EPA tests. Among the groups which we will use as examples are asphalts, hydraulic fluid, transmission oil, motor lubricating oils, heating oils, crude oil and coal. These hydrocarbon families are best studied using combined gas chromatography-mass spectrometry in full scan mode and characterizing various homologous series of hydrocarbons at known fragment ions. The hydrocarbon series providing the best information are: (1) N -alkanes; (2) iso-alkanes; (3) steranes; (4) terpanes; (5) polynuclear aromatic hydrocarbons; (6) aromatic steranes; and (7) specific polycyclic compounds.  相似文献   

10.
It is important in the implementation of the air quality standard for ozone/oxidants and non-methane hydrocarbons to develop quantitative relationships between these pollutants in air quality regions. Analyses for ambient air non-methane hydrocarbon give a direct measure of the progress in control of hydrocarbon emissions and in the reduction of oxidant/ozone concentration levels. Total hydrocarbon concentrations are much more available than non-hydrocarbon levels. An empirical relationship between total hydrocarbons and non-methane hydrocarbons has been obtained from measurements at both west and east coast sites in the U. S. The comparability of measurements from flame ionization analyzers and gas chromatography has been demonstrated. Either analytical technique can be applied to samples collected at monitoring sites to provide the 6-9 A.M. non-methane hydrocarbon aerometric results specified in the air quality standards.  相似文献   

11.
The toxicity of a polycyclic aromatic hydrocarbon (PAH) mixture was assessed on the indigenous microbial communities of a natural freshwater sediment. The fate and effects of the PAH mixture (phenanthrene, fluoranthene and benzo(k)fluoranthene) were studied over 28 days. Bacterial communities were described by bacterial counts (total bacteria and viable bacteria), and by some hydrolytic enzyme activities (beta-glucosidase and leucine-aminopeptidase), PAH concentrations were measured in the overlying waters and in the sediments. No effect of PAH was detected at 30 mg/kg for all bacterial parameters. At 300 mg/kg, the quantity of total bacteria and the proportion of viable bacteria markedly decreased, compared to the control (0 mg PAH/kg). At 300 mg/kg, an increase of the beta-glucosidase activity and a decrease of the leucine-aminopeptidase activity were observed. For all treatments, the benzo(k)fluoranthene concentration in the sediment was stable over 28 days whereas, in the same time, only 3-6% of the initial concentrations of phenanthrene and fluoranthene remained. This study shows that (1) PAH induce perturbations of sediment microbial communities in terms of density and metabolism (but not always as an inhibition), (2) indigenous bacteria of sediments might be used for toxicity assessment of specific organic pollutants, (3) native microorganisms of sediment seem to have a high capacity for PAH degradation, depending on the physico-chemical properties and the bioavailability of the substance encountered.  相似文献   

12.
This paper deals with the application of mechanochemistry to model systems composed of alumina or silica artificially contaminated with n-C16H34. The mechanochemical treatment was carried out by means of a ring mill for times ranging from 10 to 40h. Thermogravimetry and infrared and nuclear magnetic resonance spectroscopies were used for the characterization of the mechanochemical products. The results have indicated that, in the case of alumina, almost all the contaminant n-C16H34 undergoes a complex oxidative reaction path whose end products are strongly held on the surface. These end products are most likely made of crosslinked, partially oxidized hydrocarbon chains bond to the solid surface via COO(-) groups. In the case of silica, the hydrocarbon undergoes a different, equally complex reaction path, but to a lower extent. In this case the end products are most probably carbonylic compounds and graphitic carbon. Then, for both solid matrices, the mechanochemical treatment promotes significant modification of the chemical nature of the polluting hydrocarbon with end products much more difficult to remove from the surface. As the systems studied are models of sites contaminated by aliphatic hydrocarbon, the results are worthy of consideration in relation to the mobility of the contaminants in the environment.  相似文献   

13.
《Environmental Forensics》2002,3(3-4):243-250
The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings (5) that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.  相似文献   

14.
《Environmental Forensics》2013,14(3-4):243-250
The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings (Boehm et al ., 2001) that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.  相似文献   

15.
We used a series of toxicity tests to monitor oil degradation in the Kuwaiti oil lakes. Three soils from different locations with a history of hydrocarbon contamination were treated in bench-scale microcosms with controlled nutrient amendments, moisture content, and temperature that had promoted mineralization of total hydrocarbon and oil and grease in a preliminary study. Two hundred days of bioremediation treatment lowered hydrocarbon concentration to below 2 and 5 mg g(-1) for soils A and B, respectively, while in soil C hydrocarbon concentration remained at 12 mg g(-1). Although 85% of the total petroleum hydrocarbons (TPHs) in soil A were reduced 50d after treatment, results of the seed germination and Microtox tests suggested an initial increase in toxicity, indicating that toxic intermediary metabolites may have formed during biodegradation. Also, the significant decrease of TPHs and corresponding high toxicity levels were noted in soil B 200d after bioremediation. Clearly, toxicity values, and not just hydrocarbon concentration, are a key factor in assessing the effectiveness of bioremediation techniques. Field chemistry data showed a significant reduction in hydrocarbon levels after the biological treatment. We concluded that the toxicity assessment of the contaminated soil with a battery of toxicity bioassays could provide meaningful information regarding a characterization procedure in ecological risk assessment.  相似文献   

16.
Fingerprinting of hydrocarbon products requires high resolution differentiation of individual hydrocarbon compounds in any mixture. This requires the applications of various measuring techniques. In this paper, we have chosen the heavy hydrocarbons in fuels, lubricants and paving material as examples to discuss the methods for chemical characterization and differentiation.In the category most frequently termed “semi-volatile hydrocarbons” with boiling points from about 500°F to 1200°F or higher, there are several families of hydrocarbons, both natural and refined that are not easily distinguished by conventional EPA tests. Among the groups which we will use as examples are asphalts, hydraulic fluid, transmission oil, motor lubricating oils, heating oils, crude oil and coal.These hydrocarbon families are best studied using combined gas chromatography-mass spectrometry in full scan mode and characterizing various homologous series of hydrocarbons at known fragment ions. The hydrocarbon series providing the best information are: (1)N -alkanes; (2) iso-alkanes; (3) steranes; (4) terpanes; (5) polynuclear aromatic hydrocarbons; (6) aromatic steranes; and (7) specific polycyclic compounds.  相似文献   

17.
Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ13C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ13C of the soil can be explained by the δ13C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ13C in the atmospheric deposition accounts for 28.2 % of the δ13C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ13C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.  相似文献   

18.
Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k(1)) and C2Cl4 (k2) over an extended temperature range at 740+/-10 Torr in a He bath gas. These absolute rate measurements were accomplished using a laser photolysis/laser-induced fluorescence (LP/LIF) technique under slow flow conditions. The simple Arrhenius equation adequately describes the low temperature data for k1 (<650 K) and the entire data set for k2 and is given by (in units of cm3 molecule(-1) s(-1)): k1(291 - 650 K) = (9.73+/-1.15) x 10(-13) exp (158.7+/-44.0)/T, k2(293 - 720 K ) = (1.53+/-0.14) x 10(-12) exp (-688.2+/-67.5)/T. Error limits are 2sigma values. The room temperature values for k1 and k2 are within +/-2sigma of previous data using different techniques. The Arrhenius activation energies for k1 and k2 are a factor of 2-3 lower than previously reported values. The experimental measurements for both k1 and k2 in conjunction with transition state and variation transition state theory calculations infer an OH addition mechanism. The lack of a measurable kinetic isotope effect for k1 is consistent with this mechanism. Insight into the subsequent reactions of the chemically activated intermediate are presented in the form of potential energy diagrams derived from ab initio calculations.  相似文献   

19.
Monitoring of bioremediation by soil biological activities   总被引:20,自引:0,他引:20  
An evaluation of soil biological activities as a monitoring instrument for the decontamination process of a mineral-oil-contaminated soil was made using measurements of microbial counts, soil respiration, soil biomass and several enzyme activities. The correlations between these parameters and with the levels of hydrocarbon residues were investigated; the effects of different N- and P-sources on hydrocarbon decontamination and soil biological activities were determined. Inorganic nutrients stimulated hydrocarbon biodegradation but not all biological activities to a significant extent. Biodegradation could be monitored well by soil biological parameters: the residual hydrocarbon content correlated positively with soil respiration, biomass-C (substrate-induced respiration), and with activities of soil dehydrogenase, urease and catalase. Soil lipase activity and the number of hydrocarbon utilizers correlated negatively (P < 0.0001) with the remaining hydrocarbon content.  相似文献   

20.
Ethanol use as a gasoline additive is increasing, as are the chances of groundwater contamination caused by gasoline releases involving ethanol. To evaluate the impact of ethanol on dissolved hydrocarbon plumes, a field test was performed in which three gasoline residual sources with different ethanol fractions (E0: no ethanol, E10: 10% ethanol and E95: 95% ethanol) were emplaced below the water table. Using the numerical model BIONAPL/3D, the mass discharge rates of benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene were simulated and results compared to those obtained from sampling transects of multilevel samplers. It was shown that ethanol dissolved rapidly and migrated downgradient as a short slug. Mass discharge of the hydrocarbons from the E0 and E10 sources suggested similar first-order hydrocarbon decay rates, indicating that ethanol from E10 had no impact on hydrocarbon degradation. In contrast, the estimated hydrocarbon decay rates were significantly lower when the source was E95. For the E0 and E10 cases, the aquifer did not have enough oxygen to support complete mineralization of the hydrocarbon compounds to the extent suggested by the field-based mass discharge. Introducing a heterogeneous distribution of hydraulic conductivity did little to overcome this discrepancy. A better match between the numerical model and the field data was obtained assuming partial degradation of the hydrocarbons to intermediate compounds. Besides depending on the ethanol concentration, the impact of ethanol on hydrocarbon degradation appears to be highly dependent on the availability of electron acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号