首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Samples from two Dutch raw water sources were chlorinated in the laboratory at different pH:s and chlorine doses, and were analysed for mutagenic activity and the mutagenic compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Chlorination produced mutagenic activity as well as MX in both waters. The formation of MX was favoured by acidic reaction conditions and high chlorine doses, but in waters treated with excess chlorine at pH 9, no MX was detected. The mutagenicity was approximately on the same level after chlorination of both water types but the MX concentration was significantly higher in the water containing mainly humic material.

MX was found to be quantitatively extracted from acidified waters by the XAD resin adsorption technique.  相似文献   


2.
Products of the gas-phase reactions of OH radicals (in the presence of NO) and O3 with the biogenic organic compound 2-methyl-3-buten-2-ol have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography–mass spectrometry (GC-MS), gas chromatography with Fourier transform infrared detection (GC-FTIR), in situ FT-IR spectroscopy and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS/MS). Formaldehyde, 2-hydroxy-2-methylpropanal and acetone were identified from both the OH radical and O3 reactions, glycolaldehyde and organic nitrate (s) were also observed from the OH radical reaction, and the OH radical formation yield from the O3 reaction was measured. The formaldehyde, 2-hydroxy-2-methylpropanal, glycolaldehyde, acetone and organic nitrate yields from the OH radical reaction were 0.29±0.03, 0.19±0.07, 0.61±0.09, 0.58±0.04 and 0.05±0.02, respectively, and the formaldehyde, 2-hydroxy-2-methylpropanal and OH radical formation yields from the O3 reaction were 0.29±0.03, 0.30±0.06 (0.47 from FT-IR measurements) and 0.19 (uncertain to a factor of 1.5), respectively. Acetone was also observed from the O3 reaction, but appeared to be formed from secondary reactions. Reaction mechanisms are presented and discussed.  相似文献   

3.
Mixtures of ethylene and oxides of nitrogen were irradiated in the absence and presence of diethylhydroxylamine. As previously reported, the presence of diethylhydroxylamine inhibited the photo-oxidation of the hydrocarbon and nitric oxide and the onset of ozone formation. Once the diethylhydroxylamine completely reacted, the ozone rose more rapidly, but to a lower level than in the absence of diethylhydroxylamine. Peroxyacetyl nitrate was also produced with the addition of diethylhydroxylamine. The reaction mixtures were tested for total mutagenic activity by gas phase exposure to Salmonella typhimurium strain TA100. A significantly greater mutagenic activity was observed in the irradiated ethylene/diethylhydroxylamine/oxides of nitrogen mixture relative to the irradiated ethylene/oxides of nitrogen mixture. At most, 30% of the observed response could be accounted for by known reaction products.  相似文献   

4.
Chung J  Ahn CH  Chen Z  Rittmann BE 《Chemosphere》2008,70(3):516-520
N-Nitrosodimethylamine (NDMA) is a disinfection by-product shown to be carcinogenic, mutagenic, and teratogenic. A feasible detoxification pathway for NDMA is a three-step bio-reduction that leads to ammonia and dimethylamine. This study examines the bio-reduction of NDMA in a H2-based membrane biofilm reactor (MBfR) that also is active in nitrate and sulfate reductions. In particular, the study investigates the effects of H2 availability and the relative loadings of NDMA, nitrate, and sulfate, which potentially are competing electron acceptors. The results demonstrate that NDMA was bio-reduced to a major extent (i.e., at least 96%) in a H2-based MBfR in which the electron-equivalent fluxes from H2 oxidation were dominated by nitrate and sulfate reductions. NDMA reduction kinetics responded to NDMA concentration, H2 pressure, and the presence of competing acceptors. The most important factor controlling NDMA-reduction kinetics was the H2 availability, controlled primarily by the H2 pressure, and secondarily by competition from nitrate reduction.  相似文献   

5.
Ishii S  Hisamatsu Y  Inazu K  Kobayashi T  Aika K 《Chemosphere》2000,41(11):1809-1819
In order to clarify the contribution of nitrated products to the direct-mutagenic activity of products of the reactions of benzo[a]pyrene in NO2-air under various conditions, heterogeneous reactions of BaP deposited on filter in the air containing 10 ppm of NO2 have been conducted in dark or under photoirradiation. The reaction products have been analyzed by gas chromatography and mutagenicity of the products fractionated by preparative HPLC was assayed for Salmonella typhimurium strains TA98 and YG1024 in the absence of S9 mix. 3,6-dinitrobenzo[a]pyrene and 1,3-dinitrobenzo[a]pyrene, which are strong direct-acting mutagens, largely contributed to the total direct-acting mutagenicity of the dark reaction products in NO2-air. On the other hand, both the dark reaction in the presence of O3 and the photoreaction in NO2-air resulted in the formation of much smaller amounts of nitrobenzo[a]pyrenes than that observed in the dark reaction in the absence of O3. These results show that the contribution of other direct-acting mutagens to the total direct-acting mutagenicity of the products in these reactions should be considered. Benzo[a]pyrene lactones were identified in a highly mutagenic fraction of the products of the dark reaction in the presence of O3 and photoreaction and a nitrobenzo[a]pyrene lactone was also identified in a highly mutagenic fraction of the dark reaction products in the presence of O3. Nitrated oxygenated benzo[a]pyrene derivatives such as nitrobenzo[a]pyrene lactone were considered to largely contribute to direct-acting mutagenicity of the products of the dark reaction in the presence of O3 and photoreaction.  相似文献   

6.
不同阳离子对Fe~0还原硝酸盐的影响   总被引:1,自引:0,他引:1  
由于水中硝酸盐污染的普遍性、难去除性和对人体健康的潜在危害性而引起人们的广泛关注。通过批实验,考察了不同阳离子(Fe2+、Fe3+和Cu2+)对Fe0还原硝酸盐的影响。结果表明,由于加入阳离子可直接或间接地增加溶液中的Fe2+而都能促进硝酸盐的还原,作用顺序为Fe3+Fe2+Cu2+;Fe2+对硝酸盐的还原具有重要作用,并随着反应的进行,转化为铁氧化物附着在铁表面而降低铁的活性;硝酸盐还原的主要产物为氨氮,亚硝酸盐只在反应初期有少量积累,尤其是加Cu2+的体系中,但随后都很快降低;在所有体系中,检测到的三氮(NO3--N、NO2--N和NH4+-N)之和只占理论总氮的51.5%~82.6%;动力学分析表明,硝酸盐的还原在不加阳离子的体系中更符合一级反应,而加了阳离子的处理更符合Lo-gistic模型。本研究结果阐明了Fe2+对Fe0还原硝酸盐的重要性。  相似文献   

7.
Rengaraj S  Li XZ 《Chemosphere》2007,66(5):930-938
A series of Bi(3+)-doped TiO(2) (Bi(3+)-TiO(2)) catalysts with a doping concentration up to 2wt% were prepared by a sol-gel method. The prepared photocatalysts were characterized by different means to determine their chemical composition, surface structure and light absorption properties. The photocatalytic activity of different Bi(3+)-TiO(2) catalysts was evaluated in the photocatalytic reduction of nitrate in aqueous solution under UV illumination. In the experiments, formic acid was used as a hole scavenger to enhance the photocatalytic reduction reaction. The experiments demonstrated that nitrate was effectively degraded in aqueous Bi(3+)-TiO(2) suspension by more than 83% within 150min, while the pH of the solution increased from 3.19 to 5.83 due to the consumption of formic acid. The experimental results indicate that the presence of Bi(3+) in TiO(2) catalysts substantially enhances the photocatalytic reaction of nitrate reduction. It was found that the optimal dosage of 1.5wt% Bi(3+) in TiO(2) achieved the fastest reaction of nitrate reduction under the experimental condition. Bismuth ions deposit on the TiO(2) surface behaves as sites where electrons accumulate. Better separation of electrons and holes on the modified TiO(2) surface allows more efficient channeling of the charge carriers into useful reduction and oxidation reactions rather than recombination reactions. Two intermediate products of nitrite and ammonia during the reaction were also monitored to explore the possible mechanisms of photoluminescence quenching and photocatalytic reduction in the context of donor-acceptor interaction with electron trapping centers.  相似文献   

8.
用原位红外分别进行了MnOx/Al-SBA-15催化剂上NH3和NO+O2的吸附态和瞬态实验以及NH3+NO+02反应的稳态实验。结果表明,催化剂上存在着L酸位和B酸位,NH3吸附在催化剂上形成配位态的NH3和NH4+,配位态的NH3能脱氢形成-NH2活性中间态。NO+O2在催化剂上吸附形成硝酸盐类、硝基类和亚硝酸盐类。将NO+O2通入预吸附NH3的催化剂中时,表面的配位态的NH3、NH4+和-NH2都会减少直至消失,SCR反应显著。而将NH3通人预吸附NO+O2的催化剂中时,只有硝基类和亚硝酸盐类减少,硝酸盐类基本不发生变化,SCR反应微弱。NH3+NO+O2稳态反应中,催化剂表面稳定存在着NH4+和硝酸盐类,SCR反应显著。  相似文献   

9.
The effect of bromide on the mutagenicity of artificially recharged groundwater and purified artificially recharged groundwater after chlorine, ozone, hydrogen peroxide, permanganate, and UV treatments alone and in various combinations was studied. The highest mutagenicity was observed after chlorination, while hydrogen peroxide-ozone-chlorine treatment produced the lowest value for both waters. Chlorinated waters, which were spiked with bromide, had up to 3.7 times more mutagenic activity than waters without bromide after every preoxidation method. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was found to correspond as much as 76% of the overall mutagenicity in the waters not spiked with bromide. MX formation was found to be lower when the treated water contained bromide, implicating the formation of brominated MX analogues. Trihalomethane formation increased when the treated water contained bromide.  相似文献   

10.
A field experiment to investigate the formation of nitrate as an airstream passes through a hill cap cloud has been performed at the UMIST field station on Great Dun Fell. It has been shown that the aerosol nitrate concentration increased by about 0.5 microg m(-3) as the airstream passed through the cloud during the night. At sunrise the nitrate production disappeared. It is suggested that the most likely mechanism for this nitrate production was due to the solution of N2O5 and NO3 formed from the reaction of NO2 with O3. These higher oxides build up overnight in the absence of short wave radiation to photolyse them. Other possible mechanisms of nitrate production are also discussed.  相似文献   

11.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

12.

A process combining catalyzed Fe(0)-carbon microelectrolysis (IC-ME) with activated carbon (AC) adsorption was developed for advanced reclaimed water treatment. Simultaneous nitrate reduction and chemical oxygen demand (COD) removal were achieved, and the effects of composite catalyst (CC) addition, AC addition, and initial pH were investigated. The reaction kinetics and reaction mechanisms were calculated and analyzed. The results showed that CC addition could enhance the reduction rate of nitrate and effectively inhibit the production of ammonia. Moreover, AC addition increased the adsorption capacity of biorefractory organic compounds (BROs) and enhanced the degradation of BRO. The reduction of NO3?–N at different pH values was consistently greater than 96.9%, and NH4+–N was suppressed by high pH. The presence of CC ensured the reaction rate of IC-ME at high pH. The reaction kinetics orders and constants were calculated. Catalyzed iron scrap (IS)-AC showed much better nitrate reduction and BRO degradation performances than IS-AC and AC. The IC-ME showed great potential for application to nitrate and BRO reduction in reclaimed water.

  相似文献   

13.
Some known reaction products of the two commonly used food additives, sulfite and nitrite, were examined for mutagenicity using the Salmonella/mammalian-microsome test. Potassium nitrosodisulfonate, potassium aminetrisulfonate and potassium hydroxylaminemonosulfonate were not mutagenic over a dose range of 0.01 – 10 mg/plate in the strains his G 46, TA 100 and TA 98. Potassium hydroxylaminedisulfonate showed a weak mutagenic activity in his G 46 and TA 100 with microsomal activation. Hydroxylamine-O-sulfonic acid was only weakly mutagenic in the excision-repair proficient strain his G 46 in the presence of S9.  相似文献   

14.
分别以厌氧污泥、脱氮硫杆菌菌悬液和厌氧污泥并添加脱氮硫杆菌菌悬液为接种物,以硫化物和硝酸盐为进水基质,考察不同接种物条件下,各反应器的硫化物氧化特性、反硝化特性、生化反应机理及微生物特性。结果表明,在无菌条件下,硫化物不能被硝酸盐化学氧化。接种脱氮硫杆菌菌悬液的2#反应器的硫氧化速率为1.98 g S/(m3.h),停留24 h硫化物的去除率高达97%,脱硫能力最强,该接种条件下以硝酸盐氧化硫化物为主反应,优势菌为杆菌,进水的NO3--N/S应控制在0.4以下,可以实现高效生物脱硫。接种厌氧污泥的1#和3#反应器的脱氮效果比2#反应器好,停留时间为24 h时,硝酸盐的平均去除率为96%。单独接种厌氧污泥的1#反应器的硫氧化速率为1.78 g S/(m3.h),其优势菌为球菌,该接种条件下以硝酸盐氧化硫化物和硝酸盐氧化单质硫为主反应,进水的NO3--N/S应控制在0.8左右。以厌氧污泥联合脱氮硫杆菌为接种物时,硫氧化速率为1.71 g S/(m3.h),反应器以硝酸盐氧化硫化物、硝酸盐氧化单质硫以及异养反硝化为主反应,驯化后优势菌为球形、卵圆形和短杆状,应控制进水NO3--N/S为1.2,可以实现同步脱硫反硝化,该工艺既可以用于含硫废水的处理,也可以用于C/N低的硝酸盐废水的处理。  相似文献   

15.
This study was conducted to evaluate the potential applicability of an in situ biological reactive barrier system to treat nitrate-contaminated bank filtrate. The reactive barrier consisted of sulfur granules as an electron donor and autotrophic sulfur-oxidizing bacteria as a biological component. Limestone was also used to provide alkalinity. The results showed that the autotrophic sulfur oxidizers were successfully colonized on the surfaces of the sulfur particles and removed nitrate from synthetic bank filtrate. The sulfur-oxidizing activity continuously increased with time and then was maintained or slightly decreased after five days of column operation. Maximum nitrate removal efficiency and sulfur oxidation rate were observed at near neutral pH. Over 90% of the initial nitrate dissolved in synthetic bank filtrate was removed in all columns tested with some nitrite accumulation. However, nitrite accumulation was observed mainly during the initial operation period, and the concentration markedly diminished with time. The nitrite concentration in effluent was less than 2 mg-N/l after 12 days of column operation. When influent nitrate concentrations were 30, 40, and 60 mg-N/l and sulfur content in column was 75%, half-order autotrophic denitrification reaction rate constants were 31.73 x 10(-3), 33.3 x 10(-3), and 36.4 x 10(-3) mg(1/2)/l(1/2)min, respectively. Our data on the nitrate distribution profile along the column suggest that an appropriate wall thickness of a reactive barrier for autotrophic denitrification may be 30 cm when influent nitrate concentration is less than 60 mg-N/l.  相似文献   

16.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

17.
The ambient concentrations of polycyclic aromatic hydrocarbons (PAH) (including biphenyl) and nitroarenes were measured during a wintertime, high-NOx episode at a location in Southern California. Daytime and night-time ambient air samples were collected using Hi-vol filters, polyurethane foam (PUF) plugs and Tenax-GC solid adsorbent. 2-Nitrofluoranthene was the most abundant particle-associated nitroarene, but higher concentrations of 1- and 2-nitronaphthalene, methylnitronaphthalenes and 3-nitrobiphenyl were observed on the PUF plugs. Our data show that the ambient concentrations of the more volatile PAH and nitroarenes can be far greater than those of the less volatile species, and suggest that the most abundant nitroarenes in ambient air arise from atmospheric transformations of PAH emitted from combustion sources.  相似文献   

18.
Nitrate reduction by fluoride green rust modified with copper   总被引:2,自引:0,他引:2  
Choi J  Batchelor B 《Chemosphere》2008,70(6):1108-1116
Nitrate reduction by the fluoride form of green rust modified with copper (GR-F(Cu)) was investigated using a batch reactor system. The extent of nitrate reduction was measured by measuring the increase in concentration of ammonia, which is the final product of nitrate reduction by GR. This approach was required, because nitrate could be removed from solution by ion exchange without reduction. The rate of ammonium production was investigated over the range of pH 7.8-11. The fastest reaction was achieved at pH 9 when GR was present at a concentration of 0.083M as Fe(II) and 1mM of Cu(II) was added. The rate at pH 9 was enhanced by a factor of 2.5 compared to that at pH 7.8 by comparing the time elapsed to transform all nitrate to ammonium. Kinetics of nitrate reduction by GR-F at pH 7.8 were affected by the concentration of Cu(II) added. The rate constants for ammonium production increased from 0.012 to 1.52h(-1) as Cu(II) additions increased from 0 to 2.5mM, but the reaction rate at 5mM was slightly decreased to 1.25h(-1). The mechanism of enhanced rates of nitrate reduction by addition of Cu(II) could not be fully determined in this study. However, XRD results showed that magnetite was produced in the reaction of Cu(II) and GR-F and SEM shows the production of nano-size particles which were not fully identified in this study. In addition, the concentration of Fe(II) in GR was observed to linearly decrease with concentration of Cu(II) added.  相似文献   

19.
自养反硝化菌对硝酸盐氮去除动力学及影响因素研究   总被引:2,自引:0,他引:2  
孙涛  唐顺  杨琦  尚海涛 《环境工程学报》2009,3(11):1943-1946
为更经济有效地去除污水中的硝酸盐,从兼性污泥中分离获得6株能氧化单质硫和还原硝酸盐的自养反硝化菌。根据各菌株的降解曲线筛选出优势菌种N-I,并研究影响菌株N-I降解性能的环境因素,如pH、温度、碳源及硝酸盐的降解动力学。实验表明,菌株N-I对硝酸盐的降解符合一级反应动力学方程,反应的半衰期t1/2为1.42 h,反应速率常数为0.488 h-1。最佳反应pH=7,最佳反应温度为30℃,最佳NaHCO3浓度为大于或等于2.5 g/L。  相似文献   

20.
It is proposed that peroxyacetyl nitrate and its homologues are formed in polluted air by a reaction between acylate (or aroylate) radicals and nitrogen trioxide. The proposed reaction accounts for the delayed formation of peroxyacetyl nitrate upon the irradiation of low concentrations of hydrocarbons and nitrogen oxides in air. It also explains why peroxyacetyl nitrate is not formed in photooxidations at high reactant concentrations. It accounts for the formation of peroxyacetyl nitrate in the dark reaction of acetaldehyde, oxygen, and N2O5; and, finally, it explains the inhibiting effect that excess NO2 has on that dark reaction. The proposed reaction could yield either the accepted peroxyacetyl nitrate molecular structure or a molecular structure called acetyl pernitrate that does not include an oxygen-oxygen bond. The chemical properties of the molecule can be reconciled with either formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号