首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Gas/particle distributions of atmospheric semi-volatile organic compounds (SOCs) are often measured using filter/sorbent samplers. Unfortunately, the adsorption of gaseous SOCs onto a filter can cause positive biases in the measured particle-phase concentrations, and negative biases in the measured gas-phase concentrations. When quartz fiber filters (QFFs) are used, surface-area-normalized gas/quartz partition coefficient (Kp,s, m3 m−2) values will be useful when estimating the magnitudes of these errors. Gas/QFF Kp,s values have been reported in the literature only for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. Gas/QFF Kp,s values were measured here for a series of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), and also for a range of PAHs. Within each of the three individual compound classes, plots of log Kp,s vs. log pLo (sub-cooled liquid vapor pressure) were found to be linear with slopes of approximately −1. At relative humidity (RH)=25%, the pooled log Kp,s data at 25°C for the three compound classes were correlated with log pLo nearly as well (r2=0.95) as were the data for the individual compound classes (r2≈0.97). In general, the Kp,s values for the PAHs and PCDD/PCDFs studied were found to be about a factor of 2 larger for partitioning to clean QFFs at RH=25% than for TMFs at RH=21–52%. Backup QFFs used in filter/sorbent sampling in a suburban area yielded Kp,s values for PAHs at RH=37% that were significantly lower than for clean QFFs at the same RH. (This may have been the result of the adsorption of ambient organic compounds that at least partially blocked the direct adsorption of the SOCs to the QFF surface). Therefore, when QFFs are used to separate atmospheric gas- and particle-phase SOCs, corrections for compound-dependent gas adsorption artifacts for QFFs may need to be carried out using Kp,s values that were obtained with ambient backup QFFs.  相似文献   

2.
A 60-m flux tower was built on a 2100 m mountain for the measurement of the air pollutant concentration and the evaluation of dry deposition velocity in Central Taiwan. The tower was constructed in an evergreen broadleaf forest, which is the dominant species of forest in the world. Multiple-level SO2 concentrations and meteorological variables at the site were measured from February to April 2008. The results showed that the mean dry deposition velocities of SO2 were 0.61 cm s?1 during daytime and 0.27 cm s?1 during nighttime. From the comparison of the monthly data, a tendency was observed that the dry deposition velocity increases with LAI and solar radiation. Furthermore, it was observed that the deposition velocity was larger over wet canopy than over dry canopy, and that higher deposition velocities in the wet season were mainly caused by non-stomatal uptake of wet canopy. Over wet canopy, the mean dry deposition velocities of SO2 were estimated to be 0.83 cm s?1 during daytime and 0.47 cm s?1 during nighttime; and 0.44 cm s?1 during daytime and 0.19 cm s?1 during nighttime over dry canopy. There is good agreement between the results of this study and those in other studies and the predictions of Zhang et al. (2003a). The medians (geometric means) of derived rc during daytime are 233 (266) m s?1 over dry canopy and 147 (146) m s?1 over wet canopy. It was found that solar radiation is the critical important meteorological variable determining stomatal resistance during daytime. For non-stomatal resistance, clear dependencies were observed on the friction velocity and relative humidity.  相似文献   

3.
A study of deposition velocities to snow was conducted during the 1982–1983 and 1983–1984 winters at the University of Michigan Biological Station in northern Michigan. Weekly measurements were made of dry deposition rates to snow and the atmospheric concentrations of the depositing species. SO2, with an average concentration of 2.2 ppb, was the dominant atmospheric sulfur containing species. NO2, with an average concentration of 1.8 ppb, was the dominant atmospheric nitrogenous species. NO3 deposition was due primarily to HNO3, which averaged 0.2 ppb. The HNO3 deposition velocity averaged 1.4cm s−1. The SO2 deposition velocity varied with temperature, averaging 0.15 cm s−1 for samples with appreciable exposure time above − 3°C, and 0.06 cm s−1 for samples which remained below an ambient temperature of −3°C. Deposition velocities of Ca2+, Mg2+ , Na+, K+ and NH+4 were 2.1, 1.5, 0.44, 0.51 and 0.10cm s−1, respectively. The mass median diameters of these species were 4.4, 2.7, 1.8, 0.9 and 0.46 μm, respectively.  相似文献   

4.
The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO2 and/or O3 in relation to stomatal conductance (gs), water potential, intercellular [CO2], leaf temperature and vapour-pressure difference between leaf and air (VPDL) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased gs and decreased Rubisco carboxylation efficiency, Vcmax. As a result of increasing VPDL, gs decreased. Elevated [CO2] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO2 treatment.The positive impact of CO2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases.  相似文献   

5.
Two silver birch clones were exposed to ambient and elevated concentrations of CO2 and O3, and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO2 and O3 on stomatal conductance (gs), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O3 response in silver birch, while crown position and clone played only a minor role. Elevated CO2 reduced the gs, but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO2 and O3 were found. The infection biology of P. betulicola was not correlated with SD or gs, but it did occasionally correlate positively with the length of the guard cells.  相似文献   

6.
Dispersion techniques are useful for assessing the effectiveness of management practices in mitigating methane (CH4) emissions from animal operations. In this paper, the accuracy of an inverse-dispersion technique was examined for two common situations: 1) emissions from animals in a barn and 2) emissions from animals in a pen. For both situations, the accuracy of emission estimates generally increased with increasing fetch (scaled to barn height, h, or to pen width, Xs) between the source and the concentration measurement. The gas recovery ratio increased from 0.66 at 5 h to 0.93–1.03 at 10 h–25 h for the barn, and decreased from 1.59 at 0 Xs to 0.99 at 5 Xs and from 1.54 at 0 Xs to 1.09 at 5 Xs for the two small pen scenarios, due to the declining sensitivity of the dispersion model to errors in wind complexity and errors in the assumed source configuration. However, the relative uncertainty of the measured concentration increased with fetch due to the decreasing gas concentrations. Hence, improving the accuracy of emission estimates is a compromise between the source configuration sensitivity and the concentration measurement sensitivity. Fetches of about twice the size of the pen and about 10 times the height of the barn are suggested.  相似文献   

7.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (kobs ) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the kobs value increased from 19.3 to 26 M?1 s?1 and 67 M?1 s?1 when varying the alumina dose from 1 to 2 and 4 g L?1, respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L?1, the kobs values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M?1 s?1, respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M?1 s?1 were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

8.
O'Brien D  Bartkow M  Mueller JF 《Chemosphere》2011,83(9):1290-1295
The use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (Rs) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers. The use of the passive flow monitor (PFM) has been introduced for the assessment of site-specific changes in water flow. In the presented study we have demonstrated that the Rs at which both atrazine and prometryn are accumulated within the SDB-RPD-Empore disk is dependent on the flow conditions. Further, the calibration of the measured Rs for chemical uptake by the SDB-RPD-Empore disk to the mass lost from the PFM has shown that the PFM provides an accurate measure of Rs for flow velocities from 0 to 16 cm s−1. Notably, for flow rates >16 cm s−1, a non linear increase in the Rs of both herbicides was observed which indicates that the key resistance to uptake into the SDB-RPD Empore disk is associated with the diffusion through the overlying diffusion limiting membrane. Overall the greatest uncertainty remains at very low flow conditions, which are unlikely to often occur in surface waters. Validation of the PFM use has also been undertaken in a limited field study.  相似文献   

9.
The concentrations of O3 are increasing, which may have potential adverse effects on crop yield. This paper deals with assessing the intraspecific variability of two wheat cultivars (PBW 343 and M 533) at different growth stages using open top chambers. Mean O3 concentrations were 50.2 and 53.2 ppb, and AOT40 values were 9 and 12.1 ppm h, respectively, in 2008–2009 and 2009–2010. Reproductive stage showed higher AOT40 values (6.9 and 9.2 ppm h) compared to vegetative (2.23 and 2.9 ppm h). Critical levels of a 3-month AOT 40 of 3 ppm h led to 6 % yield reduction in two wheat cultivars for two consecutive years. Variations in photosynthesis rate, stomatal conductance (gs), Fv/Fm ratio, photosynthetic pigments, primary and secondary metabolites, morphological parameters, and yield attributes were measured at vegetative and reproductive stages. Reductions in number of leaves, leaf area, total biomass, root/shoot ratio, RGR, photosynthetic pigments, protein content, and Fv/Fm ratio in PBW 343 were more than M 533 at reproductive stage. Photosynthetic rate did not vary between the cultivars, but gs was higher in PBW 343 compared to M 533 under ambient O3. Higher total phenolics and peroxidase activity were recorded in M 533 at reproductive stage conferring higher resistance at latter age. Results of O3 resistance showed that M 533 was sensitive compared to PBW 343 during vegetative stage but developed more resistance at reproductive stage. PBW 343 with larger leaf area and high gs is more sensitive than M 533 with smaller leaf area and low gs. The study suggests that the sensitivity varied with plant growth stage, and the plant showing higher sensitivity during vegetative period developed more resistance during reproductive period due to higher defense mechanism. Though the yield reductions were same in both cultivars under ambient O3, the mechanism of acquiring the resistance is different between the cultivars.  相似文献   

10.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

11.
Airborne particles of diameter > 0.4 μm reaching Dye 3, Greenland during April–May 1983 were highly variable in size and concentration from day to day. Five-day backward air mass trajectories suggest the importance of long-range transport from more northerly latitudes on days with high concentrations; particle sizes were larger on these days. Lower concentrations and smaller particle sizes were associated with transport from the south. It is inferred that Dye 3 may receive material emitted from Eurasian sources and transported over the Pole, similar to inferences for more northern Arctic sites.Elemental analysis of individual particles showed an abundance of crustal material, with many particles also containing sulfur. Bulk chemical analyses of airborne particles and fresh snow, collected during three snowstorms where ice nucleation dominated, provided data which were used to estimate mass-basis scavenging ratios. Average scavenging ratios were in the range ~1000–2000 for the crustal elements Al, Fe, K, Mg, Mn, and Na. Similar values were observed for Cd, Cu and NO3. The corresponding ratios for Pb and SO42− averaged less than 200. These ratios were used with precipitation rate data to estimate wet deposition velocities in the order of ~2 cm s−1 for the first nine species, and ~0.2 cm s−1 for Pb and SO42−. Comparing fresh and older surface snow concentrations gave an average dry deposition velocity of roughly 0.2 cm s−1 for the crustal elements, with the small fraction of large particles (~5–10 μm) dominating deposition; much smaller values were associated with the remaining species. When used with other data in the literature, the results of this study suggest that total deposition velocities of Pb and SO42− may be as small as 0.05 cm s−1 in relatively dry regions of the Arctic.  相似文献   

12.
Modelling ozone (O3) deposition for impact risk assessment is still poorly developed for herbaceous vegetation, particularly for Mediterranean annual pastures. High inter-annual climatic variability in the Mediterranean area makes it difficult to develop models characterizing gas exchange behaviour and air pollutant absorption suitable for risk assessment. This paper presents a new model to estimate stomatal conductance (gs) of Trifolium subterraneum, a characteristic species of dehesa pastures. The MEDPAS (MEDiterranean PAStures) model couples 3 modules estimating soil water content (SWC), vegetation growth and gs. The gs module is a reparameterized version of the stomatal component of the EMEP DO3SE O3 deposition model. The MEDPAS model was applied to two contrasting years representing typical dry and humid springs respectively and with different O3 exposures. The MEDPAS model reproduced realistically the gs seasonal and inter-annual variations observed in the field. SWC was identified as the major driver of differences across years. Despite the higher O3 exposure in the dry year, meteorological conditions favoured 2.1 times higher gs and 56 day longer growing season in the humid year compared to the dry year. This resulted in higher ozone fluxes absorbed by T. subterraneum in the humid year. High inter-family variability was found in gas exchange rates, therefore limiting the relevance of single species O3 deposition flux modelling for dehesa pastures. Stomatal conductance dynamics at the canopy level need to be considered for more accurate O3 flux modelling for present and future climate scenarios in the Mediterranean area.  相似文献   

13.
We investigated the effect of N deposition (Ndep) on intrinsic water-use efficiency (WUEi), the ratio of photosynthesis (A) to stomatal conductance (gs), for two Quercus cerris stands at different distances to an oil refinery in Southern Italy. We used δ13C in tree rings for assessing changes in WUEi; while the influence of climate and NOx emission was explored through δ18O and δ15N, respectively. Differences in WUEi between the two sites were significant, with trees exposed to different degrees of NOx emissions showing an abrupt increase with the onset of pollution. Assuming similar gs at the two sites, as inferred through δ18O, the higher N availability at the polluted site caused the shift of the A/gs ratio in favour of A. Overall, our result suggests that an increase of Ndep may enhance tree WUE under a scenario of reduction of precipitation predicted for Mediterranean area.  相似文献   

14.
ABSTRACT

Dalton's law of partial pressures and the hypothesis that water vapor equilibrium in a canister is identical to that established above liquid water are used to predict the variation of the percent relative humidity (%RH) of air released from canisters used in ambient air sampling, typically 6-L canisters pressurized with 18 L of air. When (and if) the water vapor partial pressure in a canister exceeds its saturation vapor pressure, water vapor condensation begins and the condensation rate equals the sampling rate of water vapor into the canister. Under constant temperature conditions, the air subsequently released from the canister is less humid than the original sample, following the relationship %RH = 100% (6 L/Vs) for Vs> Vr, where Vs is the residual air volume (referenced to atmospheric pressure), and Vr is shown to depend on the %RH of the ambient air sample. Vr is the residual air volume at which water is completely removed (except for adsorbed water vapor) from the canister wall. For Vs < Vr, the predicted %RH is constant and equal to its value at Vr. Experimental values agree reasonably well with predictions at both high (90%) and low (34%) RH. However, experimental values are often slightly displaced (usually towards lower values of %RH) for mid-range %RH (61%) and variations in %RH near Vr change from canister to canister.  相似文献   

15.
Vertical concentration profiles for NH3, HNO3 and HCl-gas and for NH4+, NO3, SO2−4, Cl and Na+ aerosol were obtained from a meteorological tower in the central part of the Netherlands. An upward NH3 flux of 0.12 μgm−2 s−1 was calculated from the NH3 profiles and meteorological data. From the HNO3 profiles a maximum HNO3 dry deposition velocity of 4 cm s−1 was calculated. Good agreement was found between the measured concentration products [NH3](g) × [HNO3](g) and the theoretical values at temperatures above 0°C and relative humidities below 80%. In other cases, higher NH3 and/or HNO concentrations in the gas phase were measured than theoretically predicted.  相似文献   

16.
17.
New parameterizations for surface–atmosphere exchange of ammonia are presented for application in atmospheric transport models and compared with parameterizations of the literature. The new parameterizations are based on a combination of the results of three years of ammonia flux measurements over a grassland canopy (dominated by Lolium perenne and Poa trivialis) near Wageningen, the Netherlands and existing parameterizations from literature. First, a model for the surface–atmosphere exchange of ammonia that includes the concentration at the external leaf surface is derived and validated. Second, a parameterization for the stomatal compensation point (expressed as Γs, the ratio of [NH4+]/[H+] in the leaf apoplast) that accounts for the observed seasonal variation is derived from the measurements. The new, temperature-dependent Γs describes the observed seasonal behavior very well. It is noted, however, that senescence of plants and field management practices will also influence the seasonal variation of Γs on a shorter timescale. Finally, a relation that links Γs to the atmospheric pollution level of the location through the ‘long-term’ NH3 concentration in the air is proposed.  相似文献   

18.
Measurements of NO and NO2 were made at a surface site (55.28 °N, 77.77 °W) near Kuujjuarapik, Canada during February and March 2008. NOx mixing ratios ranged from near zero to 350 pptv with emission from snow believed to be the dominant source. The amount of NOx was observed to be dependent on the terrain over which the airmass has passed before reaching the measurement site. The 24 h average NOx emission rates necessary to reproduce observations were calculated using a zero-dimensional box model giving rates ranging from 6.9 × 108 molecule cm?2 s?1 to 1.2 × 109 molecule cm?2 s?1 for trajectories over land and from 3.8 × 108 molecule cm?2 s?1 to 6.6 × 108 molecule cm?2 s?1 for trajectories over sea ice. These emissions are higher than those suggested by previous studies and indicate the importance of lower latitude snowpack emissions. The difference in emission rate for the two types of snow cover shows the importance of snow depth and underlying surface type for the emission potential of snow-covered areas.  相似文献   

19.
Micrometeorological flux-gradient and nocturnal boundary layer methods were combined with Fourier transform infrared (FTIR) spectroscopy for high-precision trace gas analysis to measure fluxes of the trace gases CO2, CH4 and N2O between agricultural fields and the atmosphere. The FTIR measurements were fully automated and routinely obtained a precision of 0.1–0.2% for several weeks during a measurement campaign in October 1995. In flux-gradient measurements, vertical profiles of the trace gases were measured every 30 min from the ground to 22 m. When combined with independent micrometeorological measurements of water vapour fluxes, trace gas fluxes from the underlying surface could be determined. In the nocturnal boundary layer method the rate of change in mass storage in the 0–22 m layer was combined with fluxes measured at 22 m to estimate surface fluxes. Daytime fluxes for CO2 were −0.78±0.40 (1σ) mg CO2 m−2 s−1. Daytime fluxes of N2O and CH4 were very small and difficult to measure reliably using the flux-gradient technique, despite the high precision of the concentration measurements. Mean daytime flux for N2O was 17±48 ng N m−2 s−1, while the corresponding flux for CH4 was 47±410 ng CH4 m−2 s−1. The mean nighttime flux of CO2 estimated using the nocturnal boundary layer method was +0.15±0.05 mg CO2 m−2 s−1, in good agreement with chamber measurements of respiration rates. Nighttime fluxes of CH4 and N2O from the nocturnal boundary layer method were 109±69 ng CH4 m−2 s−1 and 2±3.2 ng N m−2 s−1, respectively, in good agreement with chamber measurements and inventory estimates based on the sheep and cattle stocking rates in the region. The suitability of FTIR-based methods for long term monitoring of spatially and temporally averaged flux measurements is discussed.  相似文献   

20.
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumulated stomatal flux of O3 (AFst) by canopies and sun leaves in closed aspen and aspen-birch forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin. Stomatal conductance for O3 was derived from sap flux data and AFst was estimated either neglecting or accounting for the potential influence of non-stomatal leaf surface O3 deposition. Leaf-level AFst (AFstl) was not reduced by elevated CO2. Instead, there was a significant CO2 × O3 interaction on AFstl, as a consequence of lower values of gs in control plots and the combination treatment than in the two single-gas treatments. In addition, aspen leaves had higher AFstl than birch leaves, and estimates of AFstl were not very sensitive to non-stomatal leaf surface O3 deposition. Our results suggest that model projections of large CO2-induced reductions in gs alleviating the adverse effect of rising tropospheric O3 may not be reasonable for northern hardwood forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号