首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
基于OMI/Aura卫星资料,分析了北京地区2007~2016年近10a对流层O3浓度(0~3km)、硫酸盐气溶胶光学厚度(0~2km)、SO2(边界层以内)柱浓度时空演变特征.结果表明,近10a来北京地区O3浓度总体呈现上升趋势,最低值在2007年,浓度为33.65 μg/m3;硫酸盐气溶胶污染总体变化呈现先下降后增长的趋势,2007年硫酸盐气溶胶污染最为严重,2011年污染最轻,对应的AOD值为0.252,但在2014年以后,硫酸盐气溶胶污染又出现增长趋势;SO2浓度在2007~2016年总体呈现下降的变化趋势,且下降趋势明显,最高值为2007年,最低值出现在2016年,最低值比最高值降低了60.42%,但在2011年污染出现反弹.北京O3季节变化明显,夏季高、春秋次之、冬季低;硫酸盐气溶胶污染季节特征与O3相同;SO2污染主要集中在冬季,采暖期污染程度高于非采暖期.  相似文献   

2.
基于Aura/OMI卫星资料,分析了上海地区2007—2016年近十年对流层低层O_3浓度(0~3 km)、SO_2柱浓度和硫酸盐气溶胶光学厚度(0~2 km)时空演变特征.结果表明,近十年来上海地区臭氧浓度总体呈现上升的趋势,最低值在2008年,为31.57μg·m~(-3),最高值在2016年,浓度为40.72μg·m~(-3);O_3季节变化明显,夏季高、春秋次之、冬季低.十年来,硫酸盐气溶胶污染先减少后增加,2007年硫酸盐气溶胶(AOD=0.81)污染最为严重,占近十年硫酸盐气溶胶发生频率的16.41%,2010年污染最轻(AOD=0.68),比2007年下降了16.12%,且硫酸盐气溶胶污染频率为7.68%,但在2013年以后,硫酸盐气溶胶污染又出现增长趋势;污染季节特征与O_3相同,这主要是因为夏季阳光充足有利于大气光化学反应的进行,从而使O_3和硫酸盐气溶胶等光化学产物的浓度升高.SO_2浓度在2007—2014年总体呈现下降的变化趋势,且下降趋势明显,最低值(2014年)比最高值(2007年)降低了52.76%,但在2014年后SO_2浓度略有反弹;SO_2污染主要集中在冬季.  相似文献   

3.
吴梦曦  成春雷  黄渤  李梅  陈多宏 《环境科学》2020,41(5):2006-2016
为探讨高浓度臭氧(O3)对气溶胶生成与老化过程的影响,本研究利用单颗粒气溶胶质谱仪(SPAMS)于2018年10月在广东省鹤山大气环境超级监测站进行观测.观测期间根据O3浓度的高低,定义了高臭氧浓度(PH)时段和低臭氧浓度(PL)时段,其中PH时段O3平均浓度为117μg·m-3,PL时段平均浓度为25μg·m-3.依据化学组成的不同,观测期间单颗粒主要包含老化元素碳颗粒(EC-aged)、二次颗粒(Sec)和老化有机碳颗粒(OC-aged).PH时段单颗粒总数(348 085)高于PL时段(224 797),且PH时段Sec颗粒(37.1%)的占比显著高于PL时段(27.8%),而EC-aged颗粒(32.1%)则低于PL时段(44.1%),OC-aged颗粒(13.5%)略高于P...  相似文献   

4.
在1983—1984年间对北京大气中气溶胶进行了研究。研究结果表明,大气中含碳化合物气溶胶主要来自燃煤,冬、夏季二氧化硫氧化过程有所不同,冬季大气中的硫酸盐可能来自局地污染,并与非完全燃烧的产物有关。  相似文献   

5.
上海地区光化学污染中气溶胶特征研究   总被引:7,自引:0,他引:7  
利用上海地区2011~2013年9个大气成分及气象观测站点臭氧(O3)、颗粒物(PM1、PM2.5、PM10)、气溶胶粒子谱观测资料以及气象数据,分析了上海不同功能区臭氧超标时的频率分布及各类污染物浓度特征.结果表明,上海地区夏季光化学污染严重,周边城区臭氧污染要明显高于中心城区,不同功能区污染情况差异较大,金山化工区和崇明生态岛光化学污染较为严重.通过分析光化学污染前后气溶胶变化特征可知,当出现光化学污染时,各站气溶胶浓度明显升高,特别是PM1浓度增加显著,且PM1/PM2.5比未出现臭氧污染时的比例明显升高.表明随着光化学反应的增强,二次气溶胶生成明显增多.因此可将PM1作为光化学污染的判定指标之一.  相似文献   

6.
中国典型城市臭氧与二次气溶胶的协同增长作用分析   总被引:2,自引:0,他引:2  
大气PM2.5和O3是中国城市大气中最受关注的大气污染物,它们之间存在着复杂的影响关系.本文将O3,max作为光化学活性指标,把CO作为一次排放源的示踪剂,对2017年4—10月期间北京、上海和广州的臭氧与二次气溶胶的协同增长关系进行深入分析.研究结果表明,不同光化学活性条件下,3个城市在协同增长时段PM2.5质量浓度增长量的均值与估算二次气溶胶质量浓度的变化趋势基本一致;北京和广州在春季、秋季出现协同增长的小时数较多,且北京在各光化学活性水平下的协同增长时段中PM2.5浓度增长量均最大;出现PM2.5和O3协同增长现象时段中上海市风速最大,广州市气温最高,北京市相对湿度范围最大;随着光化学活性的增强,上海和广州两市二次气溶胶的生成量呈倍数增加,其生成量范围分别为13.6~29.2 μg·m-3和9.1~28.7 μg·m-3,北京市二次气溶胶的生成量则变化不大(25.0~34.0 μg·m-3),但各光化学活性水平下的北京二次气溶胶生成量均高于上海和广州.这些研究结果表明北京、上海和广州3个城市的O3污染对二次气溶胶生成协同增长作用明显,而且北京尤其值得关注.  相似文献   

7.
大气气溶胶酸式硫酸盐的FTIR研究   总被引:6,自引:1,他引:6  
在详细分析了硫酸盐和酸式硫酸盐的红外光谱特征的基础上,利用傅利叶变换红外光谱仪,KBr压片的制样方式,选择750-500cm^-1作为定量范围,对1994年春,夏、冬和1995年春季北京中关村地区气溶胶样品中的SO4^2-和HSO4^-进行了定量测定,SO4^2-和HSO4^-在大气中的含量分别为2.56至60.4μg=m^3和未检出至5.7μg/m^3,从而建立了直接测定大气气溶胶中酸式硫酸盐的  相似文献   

8.
北京地区臭氧时空分布特征的飞机探测研究   总被引:1,自引:1,他引:1  
陈鹏飞  张蔷  权建农  高扬  黄梦宇 《环境科学》2012,33(12):4141-4150
利用2007~2010年北京地区上空(0~3.5 km)飞机探测的臭氧(O3)及氮氧化物(NO、NO2)等数据资料,分析O3的时空分布特征.结果表明:①O3月平均体积分数随高度变化趋势有较好的一致性,随高度增加,均出现先增大后减小,然后稳定不变的趋势,且高空有一个比较明显的分界线(约1.5 km).1.5 km以下是O3体积分数垂直梯度变化较大的层次,均存在一个O3体积分数高值区,说明其受近地面人为活动的影响较大;在1.5 km以上,O3体积分数的垂直梯度变化明显减小,此空间处于混合层以上,气团运动受下垫面影响较小,输送作用可能对污染物体积分数的影响更加显著.②O3体积分数变化具有明显的季节特征,春秋季节O3体积分数较低,夏季O3体积分数较高.统计的月份中,只有7~9月之间O3均值变化最不明显,差异未达显著水平(P〉0.05),其他月份之间均在0.01水平上差异显著.③在夏季一天(白天)当中,每小时O3体积分数垂直廓线与月平均统计的变化趋势一致.低空1.5 km以下O3体积分数的低值出现在上午(09:00~10:00)时段,高值出现在下午(15:00~16:00)时段,同高度内O3体积分数不同时段相差最大约为60×10-9;高空1.5~3.5 km内,O3体积分数相差不大,一般在70×10-9~80×10-9之间波动.④O3体积分数水平区域分布,0~2 km内城区四环O3体积分数较高,周边地区也出现较多明显的高值区,源强汇低造成北京市区周边近地层O3体积分数较高;高空2~4 km内,除了北京城区O3体积分数较高外,城区正北面、东南面(北京-天津方向)、西南面(北京-保定方向)的O3体积分数较高.⑤在0~3.5 km内,O3与NO、NO2和NO2/NO值之间都存在着显著的相关关系,O3与NO、NO2皆为负相关,但与NO2/NO值为正相关.  相似文献   

9.
基于卫星观测的青海高原对流层臭氧时空分布特征研究   总被引:3,自引:0,他引:3  
基于OMI-MLS对流层臭氧总量数据集对2005—2019年青海高原对流层大气臭氧总量进行提取分析,探讨其时空分布格局及气象因子的影响.结果表明:①OMI-MLS对流层臭氧总量数据在青海高原的适用性良好.③海高原的多年平均对流层臭氧总量分布整体呈东北高西南低的态势,受地形和大气环流形势影响较大.海东市的对流层臭氧总量最高,其次是西宁市、格尔木市、德令哈市,玉树市的对流层臭氧总量最低.对流层臭氧总量月变化在一定程度上表现为"倒V"型特点:峰值位于6—7月,谷值位于1月,与气温变化密切相关.对流层臭氧总量季节变化明显,空间异质性强,夏季最高,春季、秋季次之,冬季最低.③近15年青海高原对流层臭氧总量呈显著增加趋势,年平均增加速率为0.22 DU,4个季节的对流层臭氧总量均呈波动上升趋势,冬季的对流层臭氧总量增加速率最快,其次是春季、夏季,秋季增加速率较慢.④影响青海高原对流层大气臭氧总量的主要气象因子是气温和降水,而次要因子表现略有不同.  相似文献   

10.
利用2005-2019年OMI-OMAERUV L2气溶胶数据集,研究了近15年华中地区吸收性气溶胶指数(UVAI)的时空分布特征和主导气溶胶类型,探究下垫面变化和人为及气象因素的影响.结果表明:①在时间分布上,华中地区UVAI的年际变化整体呈波动上升趋势;2005-2008年UVAI波动下降,20092013年逐年增...  相似文献   

11.
根据东亚酸沉降网(EANET)和全球温室气体数据中心(WDCGG)等观测资料,对比各地区近地面O3的季节变化特征,在全球大气化学传输模式MOZART-4中引入在线源追踪方法,结合收支分析,确认各项作用对不同地区O3的贡献量.研究表明,模拟结果能够再现各地区 O3的季节变化特征以及收支量:清洁背景地区(海洋站居多)近地面...  相似文献   

12.
In this paper the grid data of total ozone mapping spectrograph (TOMS) installed on Nimbus-7 satellite (1978 to 1994) was used and the spatial and temporal distribution of total ozone over China was analyzed. The research indicates that the Qinghai-Tibet Plateau destroyed the latitudinal distribution of total ozone of China and the low value closed center emerged over Qinghai-Tibet Plateau. Long time change trends of seasonal total ozone of Qinghai-Tibet plateau are provided. It shows that the most obvious decrease of total ozone occurs in winter (Jan.), then in summer (Jul.), the relevant slow change occurs in autumn (Oct.) and spring (Apr.).  相似文献   

13.
北京夏季灰霾天臭氧近地层垂直分布与边界层结构分析   总被引:5,自引:3,他引:5  
后奥运时期首都北京的空气质量被更加关注,尤其是对于灰霾天与光化学复合污染的状况,而近地层数百米高度内的大气污染物与大气物理参数垂直分布观测对于空气质量变化过程评估至关重要.因此,本研究于2009年8月1-16日,在北京市325 m气象塔进行了相应的立体观测,观测平台垂直分布在距离地面高度8、47、120和280 m四层中.同时,在近地面320 m高度以内,分15层分别观测了大气温度、湿度、风速、风向.另外,使用气溶胶后向散射云高仪观测了边界层2.5 km内气溶胶后向散射系数.利用垂直分层的O3数据与边界层物理观测数据并结合天气形势、后向轨迹模式等方法,综合分析了本次观测数据之间的相互关系和内在联系.结果表明:夏季西北部低压槽控制的北京区域不利于低空大气扩散,容易形成光化学污染叠加灰霾污染,污染形成时白天地面小时最大φ(O3)可达120×10-9,280 m高度处可达155×10-9;来自西北偏西的气流一般较为干净,有利于北京污染物的清除,而来自西南和偏南的气流使北京的O3污染加重,导致区域性高浓度O3污染;在稳定天气条件下,夜间残留层与地面的φ(O3)差别越大,次日光化学生成的φ(O3)起点越高,表明残留层O3在次日混合层抬升过程中卷夹到地面,影响地面空气质量;300 m以内的近地层,在50 m高度左右存在φ(O3)变化程度剧烈层,这是城市冠层界面与大气化学反应共同作用的结果.  相似文献   

14.
北京城区夏季O3化学生成过程   总被引:1,自引:2,他引:1  
选取2007年7月1日—8月31日中的21个晴空日,利用观测资料和光化学箱模式计算了北京城区测点的O3生成速率G(O3)和O3生成效率OPE.结果表明,21个晴空日中G(O3)日最高小时值分布在(18~82)×10-9h-1之间;在O3污染和非污染日G(O3)最高值的平均水平无显著差异,且与Ox浓度之间不存在一致的对应关系,表明O3化学生成过程不能全面解释地面O3浓度的累积,物理传输过程对测点O3实测浓度有显著作用;各个化学过程对G(O3)的贡献率对比结果显示,HO2 在 NO向NO2的转化中贡献最大;OPE值分布在2.8~5.8之间,总体水平为4.1±0.1;OPE值与NOx浓度之间为非线性关系,OPE值随NOx浓度的增加而减少,表明消减测点附近VOCs排放能有效降低O3浓度.  相似文献   

15.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 10 km and RH(relative humidity) 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA(sulfate, nitrate, and ammonium) and SOA(secondary organic aerosol) concentrations. The average values with standard deviation of SO2-+4, NO-3, NH4 and SOA were 49.8(± 31.6), 31.4(±22.3), 25.8(±16.6) and 8.9(±4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO2-4,NO-3, NH+4, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR(sulfur oxidation ratio) and NOR(nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO2-4and NO2 to NO-3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

16.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

17.
为揭示我国主要城市群近地面臭氧的时空分布规律,使用空气质量监测网站发布的2019年243个城市共计1215个站点的臭氧浓度数据对中国正在稳步建设的19个城市群的臭氧时空分布特征进行分析,结果表明:臭氧污染高发期主要集中在夏季6、7月份,春末秋初次之,冬季基本不发生污染.城市群100μg/m³以上的臭氧浓度占比变化趋势大致表现为不规则的“V”和“W”两大类.2019年我国19个城市群可明显提取出北部和南部两个浓度分布高值中心,分别出现在夏季和秋季,夏季根据污染严重程度又可将高值中心划分为两个层级.城市群臭氧浓度分布具有空间自相关特性,夏季热点区域与北部高值中心重合,秋季则与南部高值中心位置一致,此时冷点区域面积达到最大.由于臭氧污染成因的复杂性,不能简单以现有城市群等级划分结果对其进行分级管理,需要根据实际分布情况对不同城市群制定相应污染防控措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号