首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 372 毫秒
1.
韩博  何真  张铎  孔魏凯  王愚 《中国环境科学》2021,40(12):5182-5190
针对2018~2019航季年粤港澳大湾区机场群,通过实际滑行时间修正和大气混合层高度对爬升/进近时间的修正,获得飞机主发动机排放因子和区内机场加权排放因子,同时考虑飞机辅助动力装置的排放,建立了区内飞机起飞着陆(LTO)污染排放清单.结果表明,区域内各机场污染物排放因子存在较大差异,主要来源于实际运行时间的修正以及各个机场不同的机型占比,其中NOx、CO、HC、SO2、PM 5类污染物的加权排放因子区内均值分别为17.58,8.60,0.79,1.37,0.15kg.排放量分别为15327.4,8066.7,728.4,1186.1,121.9t,绝大部分来自飞机主发动机排放.研究期内,NOx排放量在年内呈现夏秋季高、冬春季低的变化趋势,其他污染物排放量变化较为平缓.所有污染物在各机场排放量的次序较为一致,香港、广州白云分列前两位.各机型中,区内NOx及SO2主要来自A320排放,所占比例分别为19.5%、17.1%;CO及HC排放占比最大的机型均为A321,分别为25.4%、27.2%;PM排放量占比最大的机型是B738,约为23.1%.  相似文献   

2.
基于郑州新郑国际机场的飞行数据和国际民航组织发动机排放数据库,获得2019年飞机实际飞行时间,测算了全年所有机型飞机 主发动机的污染物排放因子,建立了包括飞机及地面特种车辆在内的机场精细化大气污染物排放清单.结果表明,新郑国际机场飞机运行时间对典型机型耗油量影响明显,月际变化趋势一致.典型机型的本地化污染物排放因子的差异,与各飞行阶段的耗油量和单位燃油污染排放量密切相关,其中,波音B738机型运行占比最大且排放因子较高.2019年新郑国际机场NOx、CO、HC、SO2和PM的总排放量分别为1207.7、921.2、123.7、268.3和36.2 t,主要来自飞机主发动机排放.研究期内,各类污染物排放均在11:00达到峰值.飞行阶段中,NOx排放主要来自飞机在 起飞降落循环中的爬升阶段,占比达45.6%;CO和HC在地面滑行阶段的排放占比远高于其他运行阶段,分别占95.4%和93.9%;SO2和PM在不同工作模式下的排放占比较为接近.各机型中,波音B738和空客A320两种机型在5类污染物排放量中贡献最大,波音B737机型排放CO较高.  相似文献   

3.
本研究结合北京大兴国际机场(PKX)运营后一年间的实际航班飞行数据,参考国际民航组织(ICAO)最新发布的飞机发动机排放数据库(EEDB),建立了大兴机场飞机起飞着陆循环(LTO)大气污染物排放清单,将排放清单分为试运营、新冠疫情和常态化3个阶段,利用ADMSAirport模型模拟评估了不同阶段机场排放大气污染物对周边地区的空气质量影响.最后,创新性地提出一种基于航班活动水平和气象要素的预测方法,预测了中长期规划下,机场对未来的大气环境影响.结果表明,研究期间内北京大兴国际机场LTO循环CO、NOx、HC、SO2和PM的排放量分别为389.55、574.37、31.21、45.22和4.85 t,其中NOx和CO是主要排放污染物,分别占总排放污染物的54.9%和37.3%.CO和HC排放主要分布于滑行阶段,分别占该污染物总排放量的93.4%和94.1%,而NOx排放主要集中在起飞和爬升阶段,约占其排放总量的63.7%.在该机场起降所有机型中,B738排放污染物总量最高,A332/333单位LTO循环排放的PM最高.空气质...  相似文献   

4.
将基于标准起飞着陆(LTO)循环各阶段工作时间的飞机排放量计算方法加以改进,利用AMDAR资料计算飞机的有效排放高度,进而准确计算出基于逐架飞机的大气污染物排放总量.结果表明,首都国际机场2013年飞机NOx、CO、HC、SO2和PM2.5排放总量分别为7042.1t、3189.9t、295.3t、429.4t和150.4t.与传统的基于LTO循环的方法相比,修正后的首都机场飞机NOx、CO、HC和SO2排放增加了23.5%、2.3%、2.1%和18.1%.飞机排放的CO、HC、SO2和PM2.5月变化较小,NOx排放受飞机有效排放高度影响月波动较大.1~2月飞机污染物排放量处于全年最低水平,8月各污染物排放达到峰值.此外,飞机在爬升和滑行/慢车两种模式下污染物排放比例最大,分别占排放总量的37.7%与36.8%.  相似文献   

5.
基于环境统计数据,采用排放因子法建立2020年京津冀地区燃煤工业锅炉县级大气污染物排放清单.结果表明,2020年京津冀地区燃煤工业锅炉常规大气污染物SO2、NOx、颗粒物(PM)、PM10、PM2.5排放量分别为6351,7399,2952,825,399t.,其中PM10和PM2.5分别占PM排放总量的27.9%和13.5%.重金属Hg、Pb、Cd、Cr、As的排放量分别为197.9,1391.3,32.0,1214.2,362.4kg.65t/h及以上燃煤工业锅炉为主要的排放贡献源,各类污染物的排放量占京津冀地区工业锅炉各类污染物排放总量的比重为51.1%~81.2%,是污染控制及监管的重点.河北省承德市、唐山市、张家口市为污染物排放量最大的3个城市,3个城市各类污染物排放量占京津冀地区工业锅炉各类污染物排放总量的14.6%~71.9%.污染物排放强度大的区域主要集中在天津市、河北省廊坊市、唐山市的一些区县.  相似文献   

6.
尤倩  李洪枚  伯鑫  郑昀  陈少博 《中国环境科学》2022,42(10):4517-4524
基于 2017~2020 年中国民用航空局飞机起降数据、机队配置数据和国际民航组织(ICAO)飞机发动机排放因子数据库等数据,自下而上编制了2017~2020 年中国民用航空机场高分辨率飞机起飞着陆(LTO)循环大气污染物及碳排放清单,在此基础上探究中国民用航空机场大气污染物和碳排放时空分布特征.分析 2000~2020 年 3 次疫情(2003 年非典、2012 年中东呼吸症、2020 年新冠疫情)对机场大气污染物及碳排放影响.结果表明,2020 年中国民航机场 LTO 循环 NOx、CO、HC、SO2、PM 和 CO2排放量分别为 10.90, 8.22, 0.96, 0.28, 0.06, 1360.27 万 t; HC、CO、SO2、CO2在滑行阶段排放量最大,分别占总排放量的 92.80%、91.56%、41.81%、41.81%.NOx、PM 在爬升阶段排放量最大,分别占总排放量的 47.93%、37.39%;2017~2019 年我国民航机场...  相似文献   

7.
针对Fenton/CaO调理后的市政污泥与稻壳混合成型燃料燃烧后烟气中SO2和NOx排放进行研究,分析了掺混比、温度和Fenton/CaO剂量对于SO2和NOx排放的影响规律.结果表明,污泥混合燃料中稻壳添加量增多,燃烧排放的SO2和NOx量逐渐下降,燃料硫转化率先降后升,燃料氮转化率上升;随着炉内温度的升高,污泥混合成型燃料燃烧排放的SO2和NOx量也将有所增加,燃料氮硫转化率也保持上升的趋势.经过Fenton/CaO调理后的混合成型燃料燃烧SO2产生量与未经调理污泥燃烧SO2排放量相比,低了近3.5倍,而NOx生成量相对下降了1.3倍左右.经分析,调理污泥SS2与50%的稻壳在800℃温度下混合燃烧污染物排放性能最佳.  相似文献   

8.
基于利用AMDAR数据确定大气混合层高度进而对飞机不同工作状态下的时间进行修正的计算方法,核算了2017年华北地区6座典型机场大气污染物排放量.结果显示,6座机场NOx、CO、VOC、SO2与PM2.5的排放总量分别为21504.2,7074.8,1424.0,1283.6和323.2t.飞机源NOx、CO、VOC与SO2的排放量远高于机场内其他污染源,而对PM2.5的排放贡献相差较小.HC与CO的排放主要集中在滑行阶段,占比分别为90.6%与90.2%,而NOx、SO2与PM2.5的排放主要集中在爬升阶段,排放占比分别为58.9%、38.7%和43.5%.6座机场1月份污染物排放量较低,在8月份达到峰值.基于本研究建立的天津滨海国际机场大气污染物排放清单,利用WRF-CAMQ模型研究机场排放对周边区域PM2.5浓度的影响.结果表明机场区域小时最大贡献浓度为3.24μg/m3;距离机场5km处的年均贡献浓度与小时最大贡献浓度分别为0.08和2.84μg/m3.  相似文献   

9.
基于微脉冲激光雷达提取的混合层高度与首都机场的实际运行数据,采用美国EPA方法,更准确的估算了2016年首都国际机场航空器排放清单.结果表明:在航空器起飞着陆(LTO)循环排放的各种污染物中,NOx和CO排放量最多,分别占排放总量的53.3%和38.5%.滑行阶段和爬升阶段的排放总量较多,占排放总量的49.7%和25.7%.滑行阶段是航空器排放CO、SOx、HC和PM的主要阶段.在滑行阶段的主要排放物是CO和NOx,分别占滑行阶段排放总量的71.7%和17.2%.混合层高度变化对航空器排放的NOx与CO影响最大,对SOx、HC与PM影响较小.在所有的起降航班机型中,A320对排放影响最小,B77W影响最大.航空器场面滑行时间是影响污染物排放量的一个非常重要的因素.优化航空器滑行效率,减少滑行时间,对减少机场排放量会有非常积极的作用.  相似文献   

10.
文章基于国际民航组织标准排放模型,细化了飞机 LTO 循环的运行阶段及不同阶段下推力设置变化的影响,同时利用机场跑道、年起降架次等信息修正了飞机的滑行时间,建立了 2016 年中国机场群飞机 LTO 循环的大气污染排放清单。结果表明,2016年中国民航飞机在LTO循环阶段产生的温室气体和污染物排放量分别为CO28 082.7万t、NOx33 527.9 t、CO 31 003.8 t、SO23 901.9 t、HC 2 819.5 t和PM 901.9 t。空间分布总体上呈南方高于北方的状态,其中华东和中南地区的排放量占主体。日排放量的最高值通常出现在07:00-08:00,而05:00-06:00则为最低值。在LTO循环中,86%的HC和CO来自滑进、滑出和保持等低推力模式,NOx和PM则主要在爬升、初始爬升等高推力模式排放,分别占45%和64%。  相似文献   

11.
通过部门调研、现场调查和遥感解译等方法获取天水市主城区大气污染源活动水平数据,采用排放因子法估算了天水市主城区 10类污染源的9种污染物排放量,构建了2019年天水市主城区高分辨率排放清单,并采用横向比较法和模式验证法评估了排放清单的合理性.结果表明:(1)2019年天水市主城区 SO2、NOx、CO、VOCs、NH3...  相似文献   

12.
伴随着超低排放技术在中国火电行业的广泛应用,中国火电行业排放水平已发生了显著变化.故现有火电排放清单排放因子和排放量等无法反映当前火电污染物排放提标情况.基于全国火电在线监测(CEMS)、环境统计和排污许可等数据,提出一种自下而上逐企业建立中国火电行业排放清单的方法.与传统方法相比较,该方法的特点是更加全面的考虑了火电行业超低技术,实际排放浓度与活动水平等综合因素.作为实例,本文基于所提出的火电行业排放清单的方法计算了新的2015年中国火电行业排放清单(HPEC).结果表明2015年全国火电厂SO2、NOx和烟尘平均排放浓度范围分别为7.88~208.57、40.33~238.2和5.86~53.93mg/m3.北京、上海火电排放基本达到《煤电节能减排升级与改造行动计划(2014~2020年)》制定的超低改造目标;绝大部分的省份SO2、NOx在线监测均值小于排污许可执行标准均值.中国燃煤机组的SO2、NOx、烟尘排放因子平均值分别为0.67、0.76、0.16g/kg(以入炉煤计).全国火电CO、VOCs、NOx、SO2、PM10、PM2.5总排放量分别为403.87、10.73、122.94、146.68、28.72和22.80万t/a,平均排放绩效值分别为1.06、0.03、0.32、0.39、0.08、0.06g/(kW×h).  相似文献   

13.
基于江浙沪三省(市)垃圾焚烧发电厂2018~2019年的3种大气污染物逐日排放数据,运用双重差分法,通过比较上海市垃圾分类政策实施前后焚烧废气变化,定量估计了垃圾分类的政策影响并开展了政策效应的稳健性检验.研究发现,实施垃圾分类虽然促进了SO2旬均排放浓度显著下降1.49mg/m3(降幅13.8%),但也导致NOx的旬均排放浓度上升5.96mg/m3(增幅4.1%),且NOx的排放存在明显的”节假日效应”,节假日每增加1d,旬均浓度上升3.32mg/m3.TSP排放浓度未发生显著变化.此外,3种污染物排放浓度变异系数的下降,说明分类后垃圾组分均质性的提高降低了排放波动.基于研究结果从垃圾焚烧排放标准,技术改进和垃圾分类政策制定三方面提供了固废管理的政策建议.  相似文献   

14.
根据航班实际飞行数据估算机场飞机主发动机排放量,可以提升机场排放清单编制的准确度.基于北京首都机场某日运行数据和国内1326架次航班的机载飞行数据(QAR数据),研究了基于飞行数据的机场飞机主发动机排放清单制定方法.采用一阶近似3.0(FOA3.0)方法补充国际民航组织发动机排放数据库颗粒物基准排放指数,结合QAR数据,应用波音燃油流量法2(BFFM2)估算了实际飞行条件下污染物排放指数,编制了首都机场该日飞机主发动机排放清单,分析了首都机场航班排放特征.在此基础上,探讨了结合实际数据本地化的着陆和起飞循环,以期为机场飞机主发动机排放量的快速准确核算提供新的思路.结果发现,该日航班主发动机HC、CO、NO_x和PM_(2.5)排放量分别为933.9、10967.8、14703.5和85.5 kg,较标准LTO循环估算结果的偏差分别为15.6%、13.2%、-29.1%和-18.9%.NO_x排放主要集中在起飞和爬升阶段,占其排放总量的68.0%;HC和CO排放主要集中在滑行和慢车阶段,分别占其排放总量的90.0%和88.0%;PM_(2.5)在各飞行阶段的排放较为平均.对于单位LTO循环,航班滑行过程中平均排队等候(地速为零)时间为7.7 min,产生的HC、CO、NO_x和PM_(2.5)分别占总滑行阶段对应污染物排放量的26.3%、27.5%、25.7%和27.5%,这一部分排放量有望通过场面运行优化进一步控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号