首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
使用WRF-Chem和WRF-FLEXPART模式定量研究了2018年秋冬季,尤其是在明显冷空气影响时的长江三角洲PM2.5来源贡献.结果表明:2018年秋冬季长江三角洲以外的跨区域输送对长江三角洲PM2.5的贡献占15.9%,长江三角洲内部排放贡献占84.1%,长江三角洲区域内部排放及污染相互传输的影响比长江三角洲外跨区域输送的影响更为显著.而在冷空气影响时段中,跨区域输送对长江三角洲PM2.5的贡献率为33.1%,约为整个秋冬季长江三角洲外部跨区域平均输送贡献率的2倍,输送影响更为明显;输送对长江三角洲三省一市的贡献为46.2%~56.2%,其中跨区域输送的贡献10.2%~38.6%,也明显大于各自秋冬季的平均水平.在冷空气影响时段,长江三角洲四座重点城市(上海、合肥、南京、杭州)的污染潜在输送路径主要以中东路为主;上海、南京受到长江三角洲以外的污染潜在贡献较多,超过30%;杭州受到长江三角洲以外的污染潜在贡献较少,为16.1%.  相似文献   

2.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9  
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

3.
对2014~2017年上海出现的PM2.5中度及以上污染过程的地面形势进行分析,发现上海出现PM2.5中度及以上污染的地面形势场主要可分为输送型、静稳型和叠加型3种类型,其中输送型是影响上海市PM2.5中度及以上污染的主要天气形势,占比45.8%.通过选取典型个例,分析了3类污染天气型气象成因和维持机制.并利用WRF驱动FLEXPART模式,结合排放源清单,探讨不同污染天气型下影响上海的主要污染物来源:输送型污染有3条影响上海的主要污染传输通道,分别为东路(东海海面)、中路(江苏沿海)和西路(安徽-苏南),主要时段在污染前1d;静稳型污染影响上海的潜在污染源区集中在上海及周边地区;叠加型污染既存在明显污染输送通道,也有明显的上海及周边潜在污染贡献区域.  相似文献   

4.
本文对大气细颗粒物PM2.5的污染状况和污染特征进行了综述和分析,阐述了大气中PM 2.5对对环境和人体健康影响。为改善空气环境质量和提高居民的生活质量,本文提出减少PM2.5污染相应的防治措施。  相似文献   

5.
王成  闫雨龙  谢凯  李如梅  徐扬  彭林 《环境科学》2020,41(3):1036-1044
采集了阳泉市城区2017年10月15日~2018年1月23日PM2.5样品,分析了优良天和污染天PM2.5及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM2.5进行来源分析.结果表明,采样期间污染天二次无机离子(SO42-、 NO-3和NH+4)在PM2.5中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM2.5的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM2.5的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动...  相似文献   

6.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65. 4%),主要来源为燃煤(24. 4%)和工业工艺源(23. 7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州...  相似文献   

7.
上海典型持续性PM2.5重度污染的数值模拟   总被引:5,自引:1,他引:5  
本研究针对2013年1月23~24日的上海PM_(2.5)持续重污染过程,采用WRF-Chem大气化学模式以及PM_(2.5)质量浓度、能见度、气象要素等地面实测资料相结合的方式,揭示了造成上海冬季PM_(2.5)持续性重污染的一类"天气学必要成因",即一次弱冷空气活动过程导致了两种不利污染天气条件——"弱气压场(静稳形势)"和"弱冷空气扩散(输送形势)",两者先后影响上海造成PM_(2.5)浓度持续上升.主要过程如下:首先弱冷空气影响之前,上海处在不利的局地气象扩散条件下,受弱气压场控制10 h后本地PM_(2.5)质量浓度达到重度污染水平,之后夜间稳定边界层(地面静风和低层逆温)使得PM_(2.5)重度污染维持了7h,期间PM_(2.5)平均质量浓度为172.4μg·m~(-3).后期弱冷空气影响上海,虽然改善了局地扩散条件但是同时产生了明显的周边污染物输送,使得本地PM_(2.5)质量浓度升高并达到峰值(280μg·m~(-3)),继续加重污染水平,期间PM_(2.5)平均质量浓度为213.6μg·m~(-3).WRF-Chem模拟结果进一步表明,整个污染过程周边区域输送对上海PM_(2.5)平均贡献率为23%,其中两个阶段周边区域输送的平均贡献率分别为17.2%和32.2%,可见在不同的污染天气条件下周边污染源的贡献存在显著差异,因此可以根据对污染天气类型的预判制定应急减排方案.  相似文献   

8.
汾渭平原是我国空气污染最严重的区域之一,2018年被列为重点区域. 本研究针对汾渭平原11城市开展PM2.5化学组分连续观测,分析PM2.5浓度和主要化学组分的时空分布规律,并利用PMF模型解析PM2.5污染来源. 结果表明:①2018—2019年秋冬季汾渭平原11城市ρ(PM2.5)平均值为(101.4±65.4)μg/m3,是京津冀及周边地区“2+26”城市的1.1倍. 临汾市ρ(PM2.5)最高(216.8 μg/m3),是汾渭平原的2.1倍. ②2018—2019年秋冬季汾渭平原PM2.5的主要化学组分是有机物、硝酸根离子、地壳物质和硫酸根离子,其中地壳物质占比是京津冀及周边地区的1.6倍. ③受污染物排放、气象条件以及地理位置的影响,汾渭平原PM2.5中有机物、硝酸根离子、地壳物质、硫酸根离子、铵根离子和氯离子的空间分布具有明显的差异性. ④随着污染的加重,硝酸根离子、硫酸根离子和氯离子在PM2.5中的占比均逐渐增加,地壳物质、元素碳、微量元素等与一次排放相关的组分占比随污染加重逐渐减少,表明污染期间燃煤源管控仍需进一步加严,而对扬尘源和机动车等污染源的管控起到了良好的效果. ⑤重污染过程期间,相对湿度增加、风速减小是影响PM2.5浓度上升的客观因素,二次组分以及与燃煤源和生物质燃烧源有关的化学组分的增长是影响PM2.5浓度上升的重要原因,二次源和燃烧源是PM2.5的主要来源. 研究显示,汾渭平原秋冬季PM2.5污染较重,尤其需要关注燃烧源的管控.   相似文献   

9.
在南京市仙林地区住宅楼内和室外采集PM2.5样品,分析PM2.5中金属的污染特征及主要来源.结果显示,室内外PM2.5平均浓度分别为80.56μg/m3和96.77μg/m3,室内外PM2.5浓度比(I/O)平均值为0.87.除Mg外,室外其他金属平均值均高于室内.元素Pb室内外浓度相关性最高,R值为0.807.室内外PM2.5中金属元素Cd、Cu、Pb、Zn、As、Co、Cr和Ni富集程度较高.主成分分析结果显示,室外PM2.5中金属的主要来源为土壤尘、交通排放、金属冶炼、垃圾焚烧等;室内PM2.5中金属可能的来源为室外颗粒物的渗透及室内烹饪和家具材料等.  相似文献   

10.
为研究阜新市秋冬交替期间大气PM2.5无机元素污染特征及来源,于2017年10月、12月对城区4个点位采集样品,利用ICP-MS、AFS-8900、ICP-AES测定18种元素含量,结合气象参数,分析秋、冬两季PM2.5污染特征,运用富集因子法(EF)、主成分分析法(PCA)及聚类分析法解析PM2.5元素污染特征及来源.结果表明,阜新城区冬季PM2.5质量浓度(56.5μg/m3)是秋季的1.5倍,秋、冬两季PM2.5平均质量浓度为47.5μg/m3;冬季PM2.5与SO2、NO2的同源性表现强于秋季;冬季PM2.5中V、Cr、Mn、Ni、Cu、Zn、Pb、As、Cd、Hg、Mg、Ti 12种典型人为源标识性元素总质量百分比(8.78%)是秋季的1.45倍,表明城区冬季PM2.5显著受到人为活动影响.富集因子分析显示EF值大于100的元素为Cd、Hg、Zn,冬季EF(Cd)高达532.34,可能与城南3km公里处露天矿坑大量残煤自燃排烟有关;冬季EF(Cr)比秋天增高了7.9倍.源解析结果表明,燃煤与工业烟尘、机动车尾气、生物质燃烧及土壤风沙扬尘是阜新PM2.5无机元素的主要来源.秋季表现出明显的来源复合性,第一主因子解释了变量总方差的77.013%,聚类分析第1类包含了Cd、Hg、Mn、Ni、As、V、Cr、Cu、Pb、Zn、Ti和Mg 12种元素;冬季则表现出明显的来源广泛性,表明冬季PM2.5来源相对复杂,应强化冬季PM2.5污染综合防治与管控.  相似文献   

11.
为研究阜新市秋冬交替期间大气PM2.5无机元素污染特征及来源,于2017年10月、12月对城区4个点位采集样品,利用ICP-MS、AFS-8900、ICP-AES测定18种元素含量,结合气象参数,分析秋、冬两季PM2.5污染特征,运用富集因子法(EF)、主成分分析法(PCA)及聚类分析法解析PM2.5元素污染特征及来源.结果表明,阜新城区冬季PM2.5质量浓度(56.5μg/m3)是秋季的1.5倍,秋、冬两季PM2.5平均质量浓度为47.5μg/m3;冬季PM2.5与SO2、NO2的同源性表现强于秋季;冬季PM2.5中V、Cr、Mn、Ni、Cu、Zn、Pb、As、Cd、Hg、Mg、Ti 12种典型人为源标识性元素总质量百分比(8.78%)是秋季的1.45倍,表明城区冬季PM2.5显著受到人为活动影响.富集因子分析显示EF值大于100的元素为Cd、Hg、Zn,冬季EF(Cd)高达532.34,可能与城南3km公里处露天矿坑大量残煤自燃排烟有关;冬季EF(Cr)比秋天增高了7.9倍.源解析结果表明,燃煤与工业烟尘、机动车尾气、生物质燃烧及土壤风沙扬尘是阜新PM2.5无机元素的主要来源.秋季表现出明显的来源复合性,第一主因子解释了变量总方差的77.013%,聚类分析第1类包含了Cd、Hg、Mn、Ni、As、V、Cr、Cu、Pb、Zn、Ti和Mg 12种元素;冬季则表现出明显的来源广泛性,表明冬季PM2.5来源相对复杂,应强化冬季PM2.5污染综合防治与管控.  相似文献   

12.
基于WRF-Chem模型,结合气象要素,从PM2.5浓度的消减量及时空变化特征等方面模拟分析了煤改电政策实施前后京津冀地区采暖期(2018年11月~2019年3月)PM2.5的排放变化.结果表明,WRF-Chem模型很好地模拟了京津冀地区PM2.5浓度变化,北京、天津和石家庄模拟值与观测值的相关系数分别为0.66、0.66和0.52,表现出良好的相关性.煤改电政策的实施对京津冀重点地区PM2.5减排效果明显,PM2.5日均减少量分布在0.2~6.1μg/m3,减少比例分布在1.2%~7.8%.PM2.5小时均值变化显示,2018年12月PM2.5减少量分布在0.4~8.3μg/m3,减少比例分布在2.3%~7.7%.其中,北京大兴区减排量达8.3μg/m3,天津地区减排比例达7.7%.在特殊气象条件下,煤改电政策影响范围可扩散至山东、江苏、河南北部以及山西西部,PM2.5小时均值减少量最大超过50μg/m3.  相似文献   

13.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

14.
对邯郸市区内邯郸钢铁集团(邯钢)、邯郸市环境监测中心(环保局)、河北工程大学(矿院)3个点位4个季节代表月大气PM2.5样品进行采集,并对其离子、元素、碳质组分进行测试分析;利用基于排放清单、受体模型与空气质量模型相结合的综合来源解析方法,对邯郸市区大气PM2.5贡献来源进行分析.结果表明:邯郸市区PM2.5年均浓度为85.5μg/m3,秋冬季浓度明显高于春夏季,邯钢点位浓度略高于矿院和环保局;PM2.5中占比较高的组分为NO3-、SO42-、POA、SOA和NH4+,分别占15.7%、14.5%、13.2%、12.2%和12.4%,具有明显的二次污染和有机污染特征,冬季二次组分和有机组分占比略高于其他季节,环保局点位一次有机气溶胶(POA)和二次有机气溶胶(SOA)占比略高于矿院和邯钢;冶金和扬尘是PM2.5最主要的贡献来源,贡献率分别为27.0%和18.7%,冶金源在春夏季的贡献比例高于秋冬季,在邯钢点位的贡献率明显高于环保局和矿院.  相似文献   

15.
本文提出了一种长三角区域性PM2.5污染日的判别方法,以出现5个、8个连片污染城市为检验阈值,分别覆盖了96%和100%的区域污染日.然后利用T-mode斜交旋转分解方法(PCT)对2015—2018年11—2月长三角地区260个区域性PM2.5污染日进行分型,揭示了4种不同的PM2.5的空间分布形态(整体型、西部型、西北型和东北型),其影响范围、持续时间和污染程度存在显著差异.其中,整体型污染受L型高压控制,出现日数最多(139 d)、覆盖范围最广(31个城市)、区域平均浓度最高(104.3 μg·m-3),是影响长三角地区PM2.5环境质量的最重要的污染类型.西部型和西北型分别受东路冷空气、西路冷空气影响,PM2.5分别呈现"西高东低"、"北高南低"的分布形态,前者主要影响安徽大部和浙江北部,后者主要影响安徽北部和江苏西北部.东北型是长三角本地排放在弱气压场和高压中心下混合产生,主要影响江苏大部和上海,基本不受跨区域输送影响.针对不同类型的污染影响范围和程度可以采取差异化的大气污染联防联控措施.  相似文献   

16.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

17.
以PM2.5和O3浓度超标为表征的区域性大气复合污染已成为当前我国大气污染的主要问题,严重影响到经济的发展和社会的和谐,探究PM2.5与O3的协同控制近年来成为大气污染防控的热点.本文基于WRF-Chem模式,结合气象、大气污染物观测数据及MEIC排放清单等数据,依据不同比例的NOx和VOCs减排量,设计了36组减排情景,模拟了长三角地区PM2.5和O3复合污染时段的空气质量状况.同时,利用综合经验动力学(CEKMA)方法,综合考虑NOx和VOCs减排的边际效益成本和环境健康效益,评估了长三角地区NOx及VOCs减排对PM2.5和O3大气污染控制的影响.最后,定性并定量地研究两者的协同关系及协同减排效果,给出了该区域在复合污染情景下的先侧重VOCs、后侧重NOx减排的协同优化路径,采取先减少NOx排放约7...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号