首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
从污染环境分离和筛选得到了9株PAHs降解菌,以其为基本菌种,构建高效修复PAHs复合污染体系的菌群(D)。采用平板稀释涂布计数法对降解体系中菌群(D)的动态结构进行了解析,数据显示菌群内的微生物在降解过程中能相互协作,发挥稳定且高效的降解作用。实验进一步研究了菌群D对单一PAH和混合PAHs的降解特性,结果表明,无论对单一PAH还是混合PAHs,菌群D均具有较强的降解能力。当降解历时6 d,菌群D能使40 mg/L的单一PAH平均降解85.8%,使60 mg/L的混合PAHs平均去除89.4%。菌群D在多环芳烃复合污染体系的生物修复方面具有潜在的应用价值。  相似文献   

2.
高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。分别以石油污染土壤和焦化废水活性污泥为菌源,分离出芘降解菌和混合PAHs(菲、荧蒽和芘)降解菌共14株并对其降解性能进行对比研究。结果表明,筛选得到的菌株分别属于9个菌属,其中2种菌源共有的菌属为Mycobacterium sp.、Ralstonia sp.和Shinella sp.。芘和PAHs的高效降解菌(CP16和CM32)均属于分支杆菌属(Mycobacterium),来源于焦化废水活性污泥;菌株CP16对芘(50mg/L)的7 d降解率为74.99%,CM32对PAHs(菲50 mg/L、荧蒽和芘各10 mg/L)的7 d降解率为100%。因此,以焦化废水活性污泥为菌源更有利于获得高效的多环芳烃降解菌。  相似文献   

3.
微生物修复技术具有经济绿色、环境友好等特征,已成为多环芳烃(PAHs)污染土壤的主要修复手段之一。然而,针对经历长期老化的污染场地土壤,微生物修复效率偏低,生物强化技术亟待进一步提高。以PAHs高效降解菌铜绿假单胞菌(Pseudomonas aeruginosa,PAE)为对象,研究了新型碳质纳米材料氧化石墨烯(GO)对PAE生长和PAHs降解的影响,探讨了GO强化PAE降解土壤PAHs的效果及其机制。结果显示:(1)50~100 mg/L GO可以显著促进PAE的生长和胞外聚合物(EPS)的分泌。(2)PAE及GO(100 mg/kg)的添加显著促进了老化土壤中PAHs的降解。(3)GO添加前期,土著微生物群落丰度下降,PAE丰度显著增加;处理后期,土壤细菌群落丰度恢复至对照组水平。适宜浓度GO的添加可以影响土壤微生物的多样性和丰度,促进PAHs的降解,然而,修复后期GO的影响力下降,土壤微生物群落呈现出“扰动—恢复”模式。研究结果有助于深入理解GO对环境微生物的效应,为PAHs污染土壤的微生物修复提供新思路。  相似文献   

4.
一株多环芳烃降解菌的筛选及其降解特性   总被引:1,自引:0,他引:1  
微生物修复是治理土壤多环芳烃(polycyclic aromatic hydrocarbons, PAHs)污染的主要方法,而高效降解菌筛选是微生物修复技术的重要基础。从北京焦化厂土壤中筛选分离得到一株PAHs降解菌Q3,通过生理生化和16S rDNA等分析手段鉴定其为Rhodococcus rhodochrous。结果表明:该菌株对芘的耐受能力较强,可降解初始浓度为200 mg·L~(-1)的芘;该菌株具有降解广谱性,可利用苯并[a]芘、苯并[b]荧蒽、二苯并[a,h]蒽、苯并[g,h,i]苝等9种PAHs为唯一碳源进行代谢,特别是对苯并[a]芘等高环PAHs具有较好的降解效果;此外,该菌株可有效降解模拟液中的混合PAHs,并且对野外被PAHs长期污染的土壤具有较好的强化修复效果。投加菌株处理后的处理组与对照组相比,土壤PAHs总去除率提高了24%。以上结果表明该菌株对环境中被PAHs污染的土壤具有较好的强化修复潜力,可为PAHs污染土壤的微生物修复技术提供技术参考。  相似文献   

5.
盐环境下降解菌群对芘的降解特性研究   总被引:2,自引:0,他引:2  
以芘为多环芳烃(PAHs)的代表物,利用1.0%盐度的无机盐培养基从石油污染土壤中富集出高效嗜盐PAHs降解菌群。通过DNA测序鉴定,菌群中对芘起重要降解作用的是Rhodanobacter、Pseudomonas、Mycobacterium,3者碱基比例达到31.82%。14d内,萘、菲、荧蒽、芘、苯并[a]芘5种PAHs的挥发损耗均可忽略不计。筛选得到的菌群降解芘的最佳条件为:酵母粉质量浓度为120mg/L,盐度不超过1.0%,无需额外添加甲基-β-环糊精。筛选出的降解菌群对芘的最佳降解条件可用于降解萘、菲、荧蒽和苯并[a]芘等其他PAHs,但随着PAHs环数增加,分子量增大,降解率降低。在最佳条件下降解14d时,萘、菲、荧蒽、芘、苯并[a]芘5种PAHs的降解率可分别达100.00%、85.48%、51.92%、56.28%、50.45%。  相似文献   

6.
机油高效降解菌群筛选及降解效果初探   总被引:2,自引:0,他引:2  
从多处受石油污染的土壤中经过初步筛选、混合驯化得到以机油为唯一碳源进行生长代谢的混合菌群.利用此混合菌群进行的降解实验结果表明,该菌群对高浓度机油废水具有较强的降解能力,初始含机油约2.0 g/L的人工废水.接种量为0.1%(菌体湿重/培养液体积),经过7 d的降解,机油可降至403 mg/L,降解率达81.4%;对不同浓度机油废水的降解实验结果表明,在静态实验条件下,机油质量浓度在不高于1 000 mg/L(含1 075 mg/L),混合菌群在降解过程中能自行从降解产酸的不良环境中恢复,机油质量浓度在2 000 mg/L以上,初期产酸较多,pH下降幅度较大,在7 d的周期内,废水pH无法恢复,说明在降解后期仍有大量有机酸积累而未被彻底降解;与葡萄糖共基质的降解实验结果表明,经过7 d的降解.不超过150 mg/L,的葡萄糖与1 000 mg/L机油组成的共基质体系中,机油降解基本不受葡萄糖加入的影响,但可加强早期的降解速率.而葡萄糖高于150 mg/L时,则会对混合菌群的除油率产生抑制,抑制程度随着葡萄糖浓度的提高而加大.  相似文献   

7.
经过富集、分离和纯化,从沈阳某焦化厂多环芳烃(PAHs)污染土壤中获得7株菌株B1~B7。通过初步降解实验和血平板实验,发现B4、B5、B7在15d时对PAHs总降解率均高于40%,为高效PAHs降解菌,B2为高效表面活性剂产生菌。将B4、B5、B7分别与B2等质量混合后对PAHs进行降解,发现添加B2可提高PAHs总降解率,B4+B2对PAHs的总降解率最大,在9d时平均值达到45.9%。经形态观察和16SrRNA基因序列比对,鉴定B2和B4分别归为假单胞菌属(Pseudomonas sp.)和芽孢杆菌属(Bacillus sp.)。接种B4+B2进行微生物修复实验,结果表明,接种B4+B2对PAHs污染土壤的微生物修复有明显的强化作用,在60d时PAHs总降解率达到48.1%;接种B4+B2对中环(4、5环)PAHs降解率的提高尤为明显,7种中环PAHs的平均降解率比不接种菌株的对照组提高29.6百分点。  相似文献   

8.
为了提高复合污染土壤修复的微生物资源的丰富度,为混合菌群修复污染土壤积累资料,利用多环芳烃-重金属双抗培养基在污染土壤中筛选得到一株对Cu和Cd有高耐受性的芘降解真菌,经分子生物学鉴定为米曲霉。探究了米曲霉对芘污染水体的降解效果及对重金属Cu和Cd的耐受程度,利用缺乏生长基质的毒性抑制动力学模型对芘单基质降解过程进行了拟合,以期为后续共代谢、固定化的研究及实际工程应用提供一定的理论支撑。结果表明:(1)米曲霉以芘为单基质代谢时,降解率为33%;(2)米曲霉对重金属Cu和Cd的耐受浓度分别为500 mg/L和50 mg/L,分别高出国家土壤重金属二级标准5倍和83倍;(3)米曲霉对单基质芘的降解符合Crridle提出的毒性抑制动力学简化模型Sc=Sc0·Tb*cX0(1-e-bt)(R2=0.9237)。芘初始浓度Sc0=80 mg/L,米曲霉投加量X0=85 mg/L时,数值拟合得到内源呼吸常数b=0.027,生物转化量Tb*c=0.2875。该米曲霉对单基质芘及重金属Cu和Cd表现出一定的降解性能及耐受性能,故可经过适当强化后作为多环芳烃-重金属污染土壤的微生物修复菌种。  相似文献   

9.
高效降氰菌群的构建及降解特性   总被引:1,自引:0,他引:1  
从筛选到的降氰菌中构建出了优于单一菌种降氰活性的复配菌群CNR.研究了该复合菌群的生长条件,探讨了温度、pH、接种量、氰化物初始浓度及降解时间等因素对CNR降氰的影响.研究表明,复配菌群CNR适应碱性环境,可降解高浓度氰化物(CN-11 000 mg/L),并对金属氰化物和脂肪族腈具有极强的降解能力.在有氧、pH 11、33 ℃和接种量10%条件下.含CN-11 000 ng/L培养液经60 h降解后,CN-1浓度降为0.49 mg/L,降氰率高达99.96%,达到国家一级排放标准.  相似文献   

10.
多环芳烃类化合物(PAHs)是环境中普遍存在的持久性有毒有机污染物,因具有强烈的"三致"作用,业已引起各国环境科学工作者的广泛关注,PAHs污染土壤的修复也已成为环境科学与工程领域的研究热点。以菲为PAHs的代表,研究了黑麦草/苜蓿间作对多环芳烃(菲)污染土壤的修复效应。通过温室盆栽模拟实验,观察到5 mg/kg和50 mg/kg污染水平没有明显抑制黑麦草和苜蓿的生长;黑麦草/苜蓿间作促进了植物对土壤菲的吸收,且间作体系根系富集系数大于单作;土壤中菲的可提取浓度随时间的延长逐渐减少,在菲重度污染土壤上,黑麦草/苜蓿间作修复效果明显优于单作,菲去除率可高达90.53%。因此,对于重度PAHs污染土壤该体系是一种有实际应用价值的间作修复体系。  相似文献   

11.
针对石化废水中不同特征污染物,采用人工分离筛选去除COD和油工程菌6株、硝化工程菌10株(亚硝化细菌5株、硝化细菌5株)构建高效混合菌群,通过臭氧固定化生物活性炭滤池除污染效能中试研究表明,该系统深度处理石化难降解有机废水是可行的,能同时实现去除COD、油类、NH3 N等污染物的功效,对COD、油类、NH3 N和色度的平均去除率分别为73 0%、90 5%、81 2%和90%,相应的出水分别为33 2mg/L、0 4mg/L、4 5mg/L和10倍,各项指标均达到了国家循环冷却水的用水要求,它的推广应用必将带来显著的环境效益、社会效益和经济效益。  相似文献   

12.
为了探索石油污染土壤中含氮杂环化合物的降解情况,在考察石油污染土壤理化性质的基础上,选择喹啉作为目标污染物,采用选择性富集培养的方法,从45份石油污染土壤样品中,分离得到155株降解喹啉污染物的高效降解菌株,从中选择降解效率较高的2株喹啉降解菌命名为Q5和Q24,进行喹啉的降解性能研究,比较了单一优势菌株、人工复合菌群和土壤中的自然菌群对喹啉的降解情况。实验结果表明,石油污染土壤中自然菌群对喹啉的降解效果好于单一的优势菌株和人工复合菌群。  相似文献   

13.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

14.
以腐植酸(HA)溶液为吸附剂、从受多环芳烃污染的土壤中分离出来的降解菌制成为生物修复剂,以多环芳烃(PAHs)萘、菲、芘、荧蒽、苯并蒽、苯并芘为土壤污染物,对PAHs污染土壤进行修复实验。目的是筛选与分离吸附于HA的PAHs降解菌,研究HA与降解菌的协同效应对PAHs的降解效率的影响。用经过HA吸附的PAHs富集分离培养出1株高效降解菌株,命名为Tzyx3,鉴定其为解脂耶氏酵母菌(Yarrowia lipolytica)。15 d后,土壤中萘、菲、芘、荧蒽、苯并蒽、苯并芘的降解率分别为90.7%、91.0%、74.7%、86.9%、84.7%和74.7%,表明Tzyx3和HA在PAHs污染土壤中存在协作关系,Tzyx3能够直接利用HA对土壤中的多环芳烃进行降解。  相似文献   

15.
通过驯化富集培养,从长期受发射药污染的土壤中分离筛选出能以发射药为唯一碳源并具有较高降解能力的微生物混合菌群,混合菌群对发射药样品COD去除率最高可达75.6%。经进一步分离纯化,获得了5株优势菌。实验表明混合菌群的降解能力优于各单一菌种,应以混合菌群为目标菌种。混合菌群最佳降解温度为30~35℃,最佳pH值为7.0。...  相似文献   

16.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

17.
植物混种原位修复多环芳烃污染农田土壤   总被引:2,自引:1,他引:1  
通过比较实验前后土壤微生物主要类群数量、PAHs降解菌数量、土壤PAHs含量和植物不同部位PAHs含量变化,评价植物单种和混种野外原位修复多环芳烃(PAHs)污染农田土壤的效果。结果显示,150 d天生长期内,黑麦草/小麦混种及黑麦草/蚕豆混种修复效果最好,对土壤PAHs总量的降解率分别达到了59.4%和64.8%。同时,这2个混种处理土壤细菌、真菌和PAHs降解菌数量分别显著高于相应的小麦、蚕豆和黑麦草单种处理。植物不同部位PAHs含量高低次序为根部>茎叶≈籽粒。混种模式下,蚕豆和小麦不同部位PAHs含量比单种模式的不同程度降低,特别是籽粒部。植物混种模式不仅显著提高了土壤PAHs的降解率,还降低了农作物体内PAHs含量,实现了边生产边修复,在污染农田土壤修复领域有着广阔的应用前景。  相似文献   

18.
为明确蜡状芽孢杆菌(Bacillus cereus)混合菌株对毒死蜱的降解效果,采用正交实验的方法构建混合菌。以混合菌对毒死蜱的降解率和菌株的生长量为依据,利用单一因素实验考察了不同因素对混合菌降解毒死蜱的影响。结果表明:构建的混合菌中三菌株的体积比为1∶1∶3。在含80 mg/L毒死蜱的反应体系中,最适接菌量为8%(V/V),最适pH为7。在实验浓度下,混合菌对毒死蜱的降解符合一级动力学方程。混合菌对盐分有较高的耐受度,当反应液中氯化钠浓度在20~100 g/L之间时,混合菌对80 mg/L毒死蜱的降解率最高达61%。  相似文献   

19.
焦化厂污染土壤堆肥修复过程的毒性变化   总被引:1,自引:0,他引:1  
以北京某焦化厂污染土壤为研究对象,按照5∶1的比例添加锯末后加入5%的草炭进行好氧堆肥,通过对污染土壤堆肥处理过程中16种PAHs的降解率、CAT值、SOM值、土壤毒性、pH和TN值的变化规律进行比较,研究添加草炭好氧堆肥对实际有机污染土壤中PAHs的降解效果。研究结果表明,(1)添加草炭好氧堆肥能有效降解有机污染土壤中PAHs,堆肥49 d后,EPA优控的16种PAHs总值从1 085.42 mg/kg降低到71.10 mg/kg,总降解率为93.27%。(2)焦化厂土壤中PAHs浓度较高的分别为荧蒽、菲、芴、苯并(a)蒽、芘、蒽和苯并(k)荧蒽,它们的和占Σ16PAHs总量的73.56%,其中荧蒽的含量最高,浓度为186.913 mg/kg。这7种PAHs的经过49 d添加草炭堆肥后降解率分别为95.67%、93.52%、92.22%、93.12%、93.01%、95.19%和96.24%。(3)通过有机质值和Σ16PAHs总量作图发现,有机质值和Σ16PAHs总量有一定的相关性,这表明在堆肥过程中,微生物在PAHs降解过程中起到很大的作用。  相似文献   

20.
针对柴油污染土壤生物修复技术效率低的问题,通过构建高效降解菌群修复柴油污染的土壤,采用组合优化和正交实验构建最佳组合与接种比例的菌群,并研究其柴油降解特性。结果表明,通过筛选、鉴定并命名的4株柴油降解菌为Bacillus sp. VOC18-L1、 Enterococcus faecalis-L2、 Lysinibacillus-L3、 Rhodococcus equi-L4;当4株菌接种比例为3∶1∶3∶4,pH=7.0,30℃,转速150 r·min~(-1)时,柴油降解的效果最佳,14 d对7.0 mL·L~(-1)的柴油降解率达到89.0%。通过气相色谱质谱联用仪(GC-MS)检测柴油降解产物,发现该混合菌株能将柴油中的烷烃降解为短链烷烃,最终转化为小分子物质。同时利用KEGG数据库获得代谢丰度图并初步预测每种菌的功能,根据微生物多样性测试结果,进一步证明了混合菌对柴油完全降解的效果优于单种菌种。通过人工构建的微生物菌群可以有效地应用于柴油污染土壤的修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号