首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.  相似文献   

2.
N-nitrosodimethylamine (NDMA), a potential carcinogen, was commonly found in treated wastewater as a by-product of chlorination. As treated water is increasingly used for landscape irrigation, there is an imperative need to understand the leaching risk for NDMA in landscape soils. In this study, adsorption and incubation experiments were conducted using landscape soils planted with turfgrass, ground cover, and trees. Adsorption of NDMA was negligibly weak (K(d) < 1) in all soils, indicating that NDMA has a high potential for moving with percolating water in these soils. Degradation of NDMA occurred at different rates among these soils. At 21 degrees C, the half-life (t(1/2)) of NDMA was 4.1 d for the ground cover soil, 5.6 d for the turfgrass soil, and 22.5 d for the tree soil. The persistence was substantially prolonged after autoclaving or when incubated at 10 degrees C. The rate of degradation was not significantly affected by the initial NDMA concentration or addition of organic and inorganic nutrient sources. The relative persistence was inversely correlated with soil organic matter content, soil microbial biomass, and soil dehydrogenase activity, suggesting the importance of microorganisms in NDMA degradation in these soils. These results suggest that the behavior of NDMA depends closely on the vegetation cover in a landscape system, and prolonged persistence and increased leaching may be expected in soils with sparse vegetation due to low organic matter content and limited microbial activity.  相似文献   

3.
ABSTRACT: A bromide tracer was used to evaluate percolate water and ion movement in the upper 1.2 m of soil at a proposed sewage effluent irrigation site located in the Missouri Ozarks. Two plots representing Doniphan silt loam and Crider silt loam soils were sprinkler irrigated with local ground water at a rate of 7.62 cm/week from June through August 1976. Soil water potential, percent soil moisture by volume, and background levels of bromide in soil water, ground water, and precipitation were measured at the study plots. Bromide exchange properties and saturated hydraulic conductivity of the soils were determined in the laboratory. During two selected time periods, irrigation water, was spiked with NaBr (5.0 mg/l Br). Bromide movement through the upper profile was quantified by soil water samples and post-sampling neutron activation analysis. Soil moisture was near saturatin in both soils when the Br tracer was applied. Bromide concentrations above background levels (0.023 mg/l Br, Doniphan silt loam and 0.016 mg/l Br, Crider silt loam) were detected within 2.60 hours at 0.9 m in the Doniphan soil and within 3.75 hours at that depth in the Crider soil. The rate of Br movement in the profile was greater in both soils than the measured saturated hydraulic conductivity, Bromide concentrations above background levels were present in soil water from the study plots for a minimum of 21 days after irrigation with the Br tracer.  相似文献   

4.
N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.  相似文献   

5.
Due to its resistance to many wastewater treatment processes, the antiepileptic drug carbamazepine (CBZ) is routinely found in wastewater effluent. Wastewater irrigation is an alternative to stream discharge of wastewater effluent, which utilizes the soil as a tertiary filter to remove excess nutrients and has the potential to remove pharmaceutical compounds. Previous data suggest that CBZ is strongly sorbed to soil; however, it is unknown what its fate is for long periods of irrigation and if land use affects its distribution. Therefore, the objectives of our research were to characterize CBZ concentrations in soils that have been receiving wastewater irrigation for >25 yr under three different land uses: cropped, grassed, and forested. Triplicate soil cores were collected at each of the land uses to a depth of 120 cm. Extractions for CBZ were performed using 5-g soil samples and 20 mL of acetonitrile. The extracted solutions were analyzed on a liquid chromatograph tandem mass spectrometer. The samples were also analyzed for supporting information such as organic carbon, pH, and electrical conductivity. Results suggest that there is accumulation of the CBZ in the surface soils, which have the highest organic carbon content. Average concentrations of CBZ in the surface soils were 4.92, 2.9, and 1.92 ng g, for the forested, grassed, and cropped land uses, respectively. The majority of the CBZ was found in the upper 30 cm of the profile. Our results suggest that the soils adsorb CBZ and slow its movement into groundwater, compared to the movement of nonadsorbed chemicals.  相似文献   

6.
The use of domestic effluents for the irrigation of crops has been widespread in Israel for the past 30 years. The sodium adsorption ratio (SAR) of the standardized domestic effluents ranges between 4 and 6. According to the literature, when soils with SAR levels of 4 to 6 are exposed to direct raindrop impact they are subjected to enhanced aggregate disintegration, leading to sealing processes of the soil surface and subsequent increased runoff and soil erosion. However, these phenomena were not observed in the laboratory and field experiments of this study. On the other hand, a rapid decrease of the soil SAR to its initial values was observed, in laboratory and fieldwork, once the soil was subjected to a simulated rainstorm of distilled water (laboratory) or natural rainstorms (field plots). We can conclude that the process of SAR increase during irrigation with standardized effluent water is reversible. Further investigation in this direction can lead to recommendations regarding the necessary levels of domestic sewage water purification in correlation with soil types, climatic conditions, and hazards to tap water aquifers.  相似文献   

7.
Municipal sewage sludge is often used on arable soils as a source of nitrogen and phosphorus, but it also contains organic contaminants that may be leached to the ground water. Di(2-ethylhexyl)phthalate (DEHP) is a priority pollutant that is present in sewage sludge in ubiquitous amounts. Column experiments were performed on undisturbed soil cores (20-cm depth x 20-cm diameter) with three different soil types: a sand, a loamy sand, and a sandy loam soil. Dewatered sewage sludge was spiked with 14C-labeled DEHP (60 mg kg(-1)) and bromide (5 g kg(-1)). Sludge was applied to the soil columns either as five aggregates, or homogeneously mixed with the surface layer. Also, two leaching experiments were performed with repacked soil columns (loamy sand and sandy loam soil). The DEHP concentrations in the effluent did not exceed 1.0 microg L(-1), and after 200 mm of outflow less than 0.5% of the applied amount was recovered in the leachate in all soils but the sandy loam soil with homogeneous sludge application (up to 3.4% of the applied amount recovered). In the absence of macropore flow, DEHP in the leachate was primarily sorbed to mobilized dissolved organic macromolecules (DOM, 30.3 to 81.3%), while 2.4 to 23.6% was sorbed to mobilized mineral particles. When macropore flow occurred, this changed to 16.5 to 37.4% (DOM) and 36.9 to 40.6% (mineral particles), respectively. The critical combination for leaching of considerable amounts of DEHP was homogeneous sludge application and a continuous macropore structure.  相似文献   

8.
ABSTRACT: Surrounded by an ocean, the Hawaiian Islands are limited in their natural fresh water resources. The major readily developable potable sources are the high quality ground water sources which serve both domestic uses and sugarcane irrigation although irrigation water does not require as high a quality as drinking water. The increasing overall fresh water requirements for the island of Oahu will outstrip the potential yield of fresh ground water sources, as developed by present technology, by the year 2000 according to Honolulu Board of Water Supply projections. There are water shortage regions on other islands. Water reuse from sewage effluent for irrigation will augment natural water resources, furnish supplemental or alternative fertilizer, and reduce ocean water pollution and the costs of engineering systems. In cooperative field testing from 1971 to 1975, it was demonstrated that effluent can be applied as supplemental water for furrow irrigation of sugarcane without detriment to ground water quality and sugar yield. Studies are in progress to test different dilutions of effluent and its use with chemical ripeners to improve crop yield. Sugarcane plantations on Oahu, Maui, and Kauai are in various stages of water reuse by effluent irrigation. Reuse is presently practiced for irrigation of golf courses and is being planned for forage crops in Hawaii.  相似文献   

9.
ABSTRACT .Many growing municipalities near irrigated agriculture are advocating a transfer of water now utilized for irrigation to municipal use. Alternatives are presented whereby this water can be transferred to municipal use in exchange for treated sewage effluent. The irrigation water would in effect be cycled through the municipal system prior to use on the farms. A case study of the Tucson region illustrates the relevant legal, economic and technical aspects. Effluent could be delivered to irrigators in Avra Valley at a cost less than that now paid for water pumped from declining water tables. In return the City of Tucson could import ground water now being used for irrigation through an existing pipeline which presently cannot be used because of a court injunction obtained by the irrigators. It appears that such an exchange agreement could be made without modification of existing statutory law. Similar exchange arrangements may prove to be feasible in other regions containing irrigated agriculture. Increased efficiency of water use can be achieved avoiding external effects which commonly arise in a direct transfer and are difficult to evaluate. High quality water is allocated to municipal use whereas nutrient-rich sewage effluent is transferred to irrigation.  相似文献   

10.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

11.
Ground water pollution due to herbicide leaching has become a serious environmental problem. Imazaquin [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)quinoline-3-carboxylic acid] is an herbicide used to control broadleaf weeds in legume crops. Imazaquin is negatively charged at the basic pH of calcareous soils and exhibits high leaching potential in soils. Our aim was to design formulation of imazaquin to reduce herbicide leaching. Imazaquin sorption on pillared clay (PC) and crystal violet (CV)-montmorillonite complexes was studied. The CV-montmorillonite complexes become positively charged with adsorption of CV above the cation exchange capacity (CEC) of montmorillonite, and thus can sorb imazaquin. The Langmuir equation provides a good fit to isotherms of imazaquin sorption on PC and CV-montmorillonite complexes, but for charged complexes an equation that combines electrostatics with specific binding was preferred. Maximal imazaquin sorption was 17.3 mmol kg-1 for PC and 22.2 mmol kg-1 for CV-montmorillonite complexes. The extents of imazaquin desorption into water were 21% for PC and 5% for CV-clay complexes. The presence of anions decreased imazaquin sorption on both sorbents in the sequence phosphate > acetate > sulfate. Reduction of imazaquin sorption by the anions and the extent of its desorption in electrolyte solutions were higher for PC than for CV-clay complexes. Leaching of imazaquin from CV-montmorillonite formulations through soil (Rhodoxeralf) columns was two times less than from PC formulations and four times less than that of technical imazaquin. The CV-montmorillonite complexes at a loading above the CEC appear to be suitable for preparation of organo-clay-imazaquin formulations that may reduce herbicide leaching significantly.  相似文献   

12.
ABSTRACT: A series of gravel terraces support a shallow aquifer that is the sole source of drinking water for three public water supplies and more than 400 private wells on the Greenfields Bench in west‐central Montana. Farming practices on the Greenfields Bench include irrigation of malting barley and the yearly application of herbicides for the control of weeds. The most commonly used herbicide (imazamethabenz‐methyl, U.S. trade name Assert®) has been found in the ground water on the Greenfields Bench. An experiment was conducted in 2000 and 2001 to characterize the transport of Assert and its acid metabolite to ground water under three irrigation methods: flood, wheel line sprinkler, and center pivot sprinkler. Results show that Assert concentrations in ground water are controlled by hydraulic loading rates of each irrigation method, Assert persistence in soil, hydraulic characteristics of the aquifer, and adsorption/desorption of Assert onto clay particles and organic matter.  相似文献   

13.
Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water.  相似文献   

14.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

15.
Reduction of migration of fecal coliforms (FC) and streptococci (FS) by limiting the leaching in effluent-irrigated soil was tested in lysimeters packed with quartz sand without or with added biosolids compost or with one of two clayey soils. The 200-L, 70-cm-deep lysimeters were either planted with a Eucalyptus camaldulensis or an Oroblanco citrus tree (in the sand only), or not planted. The Eucalyptus was irrigated with oxidation pond effluent (OPE) and the Oroblanco with mechanical-biological treatment plant effluent (MBTPE). The leaching fraction (LF) ranged from 0.2 to about 1.0, and the residence time (RT) from under 1 to 40 d. The Eucalyptus was also tested under intermittent leaching (RT 11-20 d) and deficit irrigation (without leaching for about 6 mo) regimes. Under MBTPE irrigation there was little or no leaching of FC and FS. Under OPE irrigation at LF 1 without a Eucalyptus there was little or no bacterial leaching at irrigation rates below 40 L d(-1) per lysimeter (RT > or = 0.8 d). Bacterial counts in the leachate were substantial in the presence of a Eucalyptus tree under LF 0.2 and intermittent leaching regimes, and when sand-packed unplanted lysimeters received OPE effluent at >45 L d(-1). Bacterial recovery peaked at LF 0.2, at up to 45% of the input level. At LF 1 (RT 0.6-2.8 d) and with intermittent leaching the recoveries were minute. Bacterial counts in the washout from the deficit-irrigated lysimeters were typical of nonpolluted soils. The bacterial concentration and recovery patterns in the leachate mostly matched the organic carbon (OC) load in the irrigation water, and its concentration and bioavailablity in the leachate. We related the leaching patterns of the fecal bacteria to their relative reproduction and die-off rates, and to the dependence of their regrowth on available carbon sources.  相似文献   

16.
Properly functioning on-site wastewater systems (OWS) are an integral component of the wastewater system infrastructure necessary to renovate wastewater before it reaches surface or ground waters. There are a large number of factors, including soil hydraulic properties, effluent quality and dispersal, and system design, that affect OWS function. The ability to evaluate these factors using a simulation model would improve the capability to determine the impact of wastewater application on the subsurface soil environment. An existing subsurface drip irrigation system (SDIS) dosed with sequential batch reactor effluent (SBRE) was used in this study. This system has the potential to solve soil and site problems that limit OWS and to reduce the potential for environmental degradation. Soil water potentials (Psi(s)) and nitrate (NO(3)) migration were simulated at 55- and 120-cm depths within and downslope of the SDIS using a two-dimensional code in HYDRUS-3D. Results show that the average measured Psi(s) were -121 and -319 cm, whereas simulated values were -121 and -322 cm at 55- and 120-cm depths, respectively, indicating unsaturated conditions. Average measured NO(3) concentrations were 0.248 and 0.176 mmol N L(-1), whereas simulated values were 0.237 and 0.152 mmol N L(-1) at 55- and 120-cm depths, respectively. Observed unsaturated conditions decreased the potential for NO(3) to migrate in more concentrated plumes away from the SDIS. The agreement (high R(2) values approximately 0.97) between the measured and simulated Psi(s) and NO(3) concentrations indicate that HYDRUS-3D adequately simulated SBRE flow and NO(3) transport through the soil domain under a range of environmental and effluent application conditions.  相似文献   

17.
Antibiotics may appear in the environment when manure, sewage sludge, and other organic amendments are added to soils. There is concern that the presence of antibiotics in soils may lead to the development of antibiotic-resistant bacteria which may spread to the rest of the environment. This paper aims at evaluating the sorption kinetics of two antibiotics frequently used in pig production. The results indicate that sorption of chlortetracycline (CTC) and tylosin (TYL) in sandy loam and clay occurs very fast. More than 95% of the CTC adsorption is completed within 10 min on both soils and of TYL within 3 h. These results suggest that 24-h soil and antibiotic solution mixtures is enough for sorption studies. Also, there is less likelihood that these antibiotics will leach through soil and appear in the ground water since their sorption on soils is very high unless they are carried by soil particles through preferential flow. There was also no effect of soil sterilization on sorption kinetics of these antibiotics thus suggesting that there is minimal probability of the antibiotics degrading by microorganisms during 24- to 48-h adsorption studies.  相似文献   

18.
An important beneficial reuse of treated wastewater (recycled water) in arid and semiarid regions is landscape irrigation. However, the environmental fate, especially groundwater contamination potential, of trace contaminants such as pharmaceuticals and personal care products (PPCPs) is a significant concern that can hinder the acceptance and adoption of such reuses. In this study, we irrigated mature turfgrass plots with nonspiked tertiary treated wastewater for over 6 mo at 100 or 130% of the reference evapotranspiration rate (ETo) and collected leachate water at the 90-cm depth on a weekly basis. In the recycled water, all 14 target PPCPs were consistently found, and the mean levels of atenolol, gemfibrozil, meprobamate, carbamazepine, and sulfamethoxazole were above 100 ng L. However, only five compounds were detected in the leachate at trace levels. Trimethoprim and primidone were frequently found, whereas the detection of sulfamethoxazole, meprobamate and carbamazepine was less frequent (<50%). When detected, the overall mean concentration in the leachate was 10.2 ng L for trimethoprim, 7.1 ng L for primidone, and 2.9 to 12.4 ng L for carbamazepine, sulfamethoxazole, and meprobamate. The majority of the target PPCPs were completely removed. Given that the irrigation rates were higher than normal, this study clearly demonstrated the efficacy of turfgrass systems in attenuating PPCPs during recycled water irrigation. However, it is also apparent that some PPCPs are more susceptible to leaching than others, and these PPCPs thus merit further research attention.  相似文献   

19.
中水回用是提高生活用水重复利用率的主要形式。提高水的重复利用率,是实现城市污水资源化是解决水资源短缺的根本途径。人工湿地既具有景观价值,又有污水处理功能。可以为市政绿化、农田灌溉景观提供水资源。经人工湿地处理的中水水质,出水水质符合我国的城市杂用水水质标准(GB/T18920-2002)、景观环境用水水质标准(GB/T18920-2002)和农田灌溉水质标准(GB5084-2005)。  相似文献   

20.
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号