首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports the results of a study using lichens as biomonitors to investigate the environmental distribution of uranium and other trace elements at selected Kosovo sites. The results suggested that the use of depleted uranium (DU) ammunitions in Kosovo did not cause a diffuse environmental contamination in such a way to have caused a detectable U enrichment in lichens. Also isotopic (235)U/(238)U measurements did not indicate the presence of DU particles in lichens. The present results also provided no indication of intense environmental contamination by the other trace elements analyzed, with the exception of Kosovska Mitrovica, where a diffuse environmental contamination by several heavy elements such as Pb, Zn, As and Cd was found.  相似文献   

2.
The contribution of the conflict of 1999 to the environmental levels of uranium in the Balkan area was evaluated by means of lichens used as biomonitors. The average U concentration found in lichens in the present study was in line with the values reported for lichens from other countries and well below the levels found in lichens collected in areas with natural or anthropogenic sources of U. Measurement of isotopic ratios 235U/238U allowed to exclude the presence of depleted uranium. According to these results, we could not detect widespread environmental contamination by depleted uranium in the Balkan area.  相似文献   

3.
BACKGROUND, AIM, AND SCOPE: The paper presents the complex approach to the assessment of the state of the environment in Southern Serbia, surroundings of Bujanovac, the region which is of great concern as being exposed to contamination by depleted uranium (DU) ammunition during the North Atlantic Treaty Organization (NATO) attacks in 1999. It includes studies on concentrations of radionuclides and heavy metals in different environmental samples 5 years after the military actions. MATERIALS AND METHODS: In October 2004, samples of soil, grass, lichen, moss, honey, and water were collected at two sites, in the immediate vicinity of the targeted area and 5 km away from it. Radionuclide ((7)Be, (40)K, (137)Cs, (210)Pb, (226)Ra, (232)Th, (235)U, (238)U) activities in solid samples were determined by standard gamma spectrometry and total alpha and beta activity in water was determined by proportional alpha-beta counting. Concentrations of 35 elements were determined in the samples of soil, moss, grass, and lichen by instrumental neutron activation analysis (INAA). RESULTS: The results are discussed in the context of a possible contamination by DU that reached the environment during the attacks as well as in the context of an environmental pollution by radionuclides and heavy metals in Southern Serbia. The results are compared to the state of environment in the region and other parts of the country both prior to and following the attacks. DISCUSSION: This is the first comprehensive study of the contents of radionuclides and heavy metals in Southern Serbia and consequently highly important for the assessment of the state of environment in this part of the country concerning possible effects of DU ammunition on the environment, as well as anthropogenic source of pollution by radionuclides and heavy metals and other elements. Also, the highly sensitive method of INAA was used for the first time to analyze the environmental samples from this area. CONCLUSIONS: The results of the study of radionuclides in the samples of soils, leaves, grass, moss, lichen, honey, and water in Southern Serbia (Bujanovac) gave no evidence of the DU contamination of the environment 5 years after the military actions in 1999. Activities of radionuclides in soils were within the range of the values obtained in the other parts of the country and within the global average. The ratio of uranium isotopes confirmed the natural origin of uranium. In general, concentrations of heavy metals in the samples of soils, plant leaves, mosses, and lichen are found to be less or in the lower range of values found in other parts of the country, in spite of the differences in plant and moss species or soil characteristics. Possible sources of heavy metal contamination were identified as a power coal plant in the vicinity of the sampling sites and wood and waste burning processes. RECOMMENDATIONS AND PERSPECTIVES: The collected data should provide a base for the health risk assessments on animals and humans in the near future. It should be emphasized that the sampling was carried out 5 years after the military action and that the number of samples was limited; therefore, the conclusions should be accepted only as observed tendencies and a detailed study should be recommended in the future.  相似文献   

4.
In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.  相似文献   

5.
Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV).  相似文献   

6.
Depleted uranium (DU) has become a soil contaminant of considerable concern in many combat zones and weapons-testing sites around the world, including locations in Europe, the Middle East and the USA, arising from its dispersion via the application of DU-bearing munitions. Once DU is released into the environment its mobility and bioavailability will, like that of other contaminants, largely depend on the type of associations it forms in soil and on the nature of the soil components to which it binds. In this study we used the BCR sequential extraction scheme to determine the partitioning of DU amongst soil fractions of texturally varying soils from locations affected by weapons-testing activities. Isotopic analyses (MC-ICP-MS and alpha-spectrometry) were performed to verify the presence of DU in whole soils and soil fractions and to determine any preferential partitioning of the contaminant. Results identified soil organic matter as being consistently the most important component in terms of DU retention, accounting for 30-100% of DU observed in the soils examined. However, at greater distances from known contamination points, DU was also found to be largely associated with the exchangeable fraction, suggesting that DU can be mobilised and transported by surface and near-surface water and does remain in an exchangeable (and thus potentially bioavailable) form in soils.  相似文献   

7.
A new strategy for characterisation of airborne uranium contamination based on ICP mass spectrometric analysis of tree bark is described. The uranium content of tree barks (50 samples) obtained from diverse locations (remote, rural, industrial) varied over almost four orders of magnitude (0.001-8.3 micrograms/g U) with maximum concentrations recorded in the vicinity of a nuclear fuel fabrication plant (0.70-8.3 micrograms/g U). Elevated concentrations were also observed near a coal-fired power station (0.25-0.38 microgram/g U). Isotopic analysis revealed significant deviation from the natural uranium isotope ratio (235U/238U, 0.00725) at four nuclear installations (235U/238U, 0.0055-0.0097). These findings indicate that tree bark serves as an effective biomonitor for uranium and, with isotopic analysis, discrimination between nuclear and non-nuclear emissions is realised.  相似文献   

8.
Abstract

Uranium mining and ore processing are known to be harmful to the environment and human health if the waste generated is not managed properly. The aim of the present study is to determine the radiological indices in the mill tailings and review the possible attempts to utilize and minimize its hazardous effect. The activity concentrations of natural radionuclides, 238U, 232Th, 226Ra, and 40K have been measured by gamma spectrometry using HP-Ge detector. The average activity concentrations of 238U, 232Th, 226Ra, and 40K in the tailings wastes were 2071.8, 59.92, 6921.262, and 445. 57?Bq/kg respectively which are higher than the international average limit. The ranges of hazard indices such as Radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), γ-radiation hazard index Iγ, Dose rate (nGy/h) and annual effective dose equivalent (AED), were estimated. Uraniumm isotopic ratios in the ore –material and mill tailing samples indicate migration out of radionuclides to the surrounding environment causing contamination and many dangerous diseases. Fairly, all investigated tailing waste samples do not satisfy the universal standards, the studied wastes relatively still have high uranium contents and need reprocessing.  相似文献   

9.
The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.  相似文献   

10.
Background Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered. Materials and Methods In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg–1 soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U. Results Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg-1. At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg-1 stimulated, but 60 mg P kg-1 marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls. Conclusion Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments. Perspectives The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.  相似文献   

11.
Major factors influencing the root-induced copper fractionation changes within the rhizosphere of maize, wheat, pea, and soybean seedlings were evaluated using a contaminated calcareous soil. The effects of acidification, alkalization, and introduction of root exudates were investigated by addition of acid, alkaline and root exudates from solution cultures, prior to incubation and copper fractionation. Raw and sterilized soils were compared for changes of copper fractionation in the rhizosphere using rhizoboxes with maize, wheat, pea and soybean seedlings. The results indicated that the general trend in considerable changes was similar among the plant species studied. The rhizosphere experienced a depletion of carbonate associated and organic bound copper along with an accumulation of exchangeable and Fe-Mn oxide bound copper. The resulting significant influence of root exudates on copper fractionation appears to have been produced through complexation rather than acidification or alkalization. The increase in exchangeable copper in rhizosphere was strengthened by microorganisms.  相似文献   

12.
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.  相似文献   

13.
汞、铅、铬污染土壤的微生物修复   总被引:2,自引:0,他引:2  
利用裂褶菌(Schizophyllum commune)GGHN08-116菌株,以棉籽壳、玉米秸等为固体发酵底物修复受汞、铅、铬污染的土壤。通过菌丝穿透重度重金属土壤实验,研究了菌丝在穿透土壤过程对交换态重金属的影响以及该菌株子实体对重金属离子的富集能力,同时,通过盆栽实验研究了在重度重金属污染土壤上,施用不同比例的固体发酵料对污染土壤中汞、铅、铬及其胡萝卜根茎质量、产量的影响,研究结果表明,该菌株能穿透厚度为5 cm的土壤,并有子实体生成,土壤pH值略有下降,与对照差异不显著;与对照相比,土壤中交换态汞、铬含量均显著下降,而交换态铅差异不显著,子实体中除汞含量符合标准外,铅、铬均超出了GB 7096-2003,GB 2762-2005规定标准。在固体发酵料处理下土壤中交换态汞、铅、铬含量均显著下降,胡萝卜根茎中均未检测到汞、铅含量,铬含量也符合GB 2762-2005规定标准。GGHN08-116菌株及其固体发酵产物具有修复受重金属污染土壤的能力。  相似文献   

14.
The characterisation by ICP-MS of an isolated Pu-U hot particle originating from the nuclear weapons accident in Palomares (Spain) shows, for the first time, that its uranium content is highly enriched in (235)U. The enrichment has been confirmed by independent analyses of two surface soil samples collected in a heavily contaminated area close to the impact point of one of the bombs. This finding clarifies better the composition of the weapons involved in the accident and is of importance when the inventory of U and Pu in the contaminated area are to be calculated.  相似文献   

15.
Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect.  相似文献   

16.
A survey of contamination of fish from major watersheds in the United States by 2,3,7,8-TCDD has been conducted by the U.S. EPA. Bottom feeding and predator fish were collected at 90 statistically selected and 305 regionally selected sites and analyzed by GC/MS. It was found that 19% of the statistically sampled sites and 31% of the regionally selected sites were contaminated at or above a minimum level of detection varying from 0.5 to 2.0 pg/g. Ten percent of all samples were contaminated at levels greater than 5.0 pg/g. It was also observed that a subset of samples collected at sites near discharge from pulp/paper manufacture (N=28) had a higher frequency of TCDD contamination above 5.0 pg/g (38%). This subset of samples also contained the sample of the greatest level of TCDD contamination (85 pg/g).  相似文献   

17.
River bottom sediments and soils were collected from the industrialized Thur River basin (north-eastern France) to assess mercury contamination. The regional geochemical background level of total mercury was evaluated to calculate mercury contamination factors (Fc) in soils and river bottom sediments. Our estimate of the mean background mercury levels in river sediments and soils, not affected by human activities, was 232 ng x g(-1) (range: 27-406 ng x g(-1)). Sediments contaminated by the effluent from a chlor-alkali plant yielded the highest contamination factors (Fc=1784). Contamination factors of surficial soils within 1 km of the industrial site range from 6.3 to 43.6. This contamination is attributed to diffuse atmospheric deposition from this local plant. However, even upstream from this industrial area elevated contamination factors were recorded for river bottom sediments (Fc=3.2 to 26.4) and for one alluvial soil profile (Fc=10). This is possibly due to past pollution resulting from waste water discharges. Mercury contamination in the different horizons of alluvial soils is not correlated with soil organic carbon content, but may be the result of occasional accidental pollution arising from the introduction of contaminated suspended particulate matter by the Thur River during periods of flooding.  相似文献   

18.
The elemental uptake and the growth response of Spinacia oleracea (spinach) to the soil contaminated with the South African bituminous coal mine dump soil, viz. 0%, 5%, 15%, and 25% w/w, was investigated. The contaminated soils were analyzed for pH, cation exchange capacity (CEC), soil organic matter (SOM), and concentrations of selected heavy metals. The pH, SOM, and CEC decreased with an increase in contamination indicating the acidic nature of coal mine soil and the raise in the soil binding sites. The distribution of Fe, Mn, Ni, Cd, and Pb in the in roots and leaves of the plants was determined in two stages of plant growth. Spinach showed high accumulation of Fe and increased levels of Ni and Cd with an increase in contamination. No plant growth was recorded with 25% contamination.  相似文献   

19.
The long-term mobility of actinides in groundwaters is important for siting nuclear waste facilities and managing waste-rock piles at uranium mines. Dissolved organic carbon (DOC) may influence the mobility of uranium, but few field-based studies have been undertaken to examine this in typical groundwaters. In addition, few techniques are available to isolate DOC and directly quantify the metals complexed to it. Determination of U-organic matter association constants from analysis of field-collected samples compliments laboratory measurements, and these constants are needed for accurate transport calculations. The partitioning of U to DOC in a clay-rich aquitard was investigated in 10 groundwater samples collected between 2 and 30 m depths at one test site. A positive correlation was observed between the DOC (4-132 mg/L) and U concentrations (20-603 microg/L). The association of U and DOC was examined directly using on-line coupling of Asymmetrical Flow Field-Flow Fractionation (AsFlFFF) with UV absorbance (UVA) and inductively coupled plasma-mass spectrometer (ICP-MS) detectors. This method has the advantages of utilizing very small sample volumes (20-50 microL) as well as giving molecular weight information on U-organic matter complexes. AsFlFFF-UVA results showed that 47-98% of the DOC (4-136 mg C/L) was recovered in the AsFlFFF analysis, of which 25-64% occurred in the resolvable peak. This peak corresponded to a weight-average molecular weight of about 900-1400 Daltons (Da). In all cases, AsFlFFF-ICP-MS suggested that相似文献   

20.
Subterranean clover and barley were grown on a soil derived from uranium mining debris and fertilized with phosphate as a U immobilizing additive for in situ remediation. We investigated the beneficial effect of P fertilization in the range 0-500 mg P kg(-1) soil in terms of U extractability, plant biomass production and U uptake. Increasing P in the mining debris caused a significant decrease of the water-soluble U and NH(4)-Ac extractable U at pH 7 and 5. For both plant species, P fertilization considerably increased root and shoot dry matter up to a maximum observed for soil receiving 100 mg P kg(-1) while the soil-to-plant transfer of U was regularly decreased by increasing P content in soil. These observations show that P fertilization represents an in situ practical option to facilitate the revegetation of U-mining heaps and to reduce the risks of biota exposure to U contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号