首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.  相似文献   

2.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

3.
Land-spreading and spray irrigation are the most widely used practices for the disposal of dairy wastewaters in Ireland but in some cases there can be problems due to contamination of surface and ground water. The use of intermittent sand filtration has been suggested as an alternative treatment process. However, a single pass through a sand filter limits denitrification because of the absence of reducing conditions following nitrification and the lack of an available carbon source. This leads to poor total nitrogen (TN) reduction and an effluent that is high in nitrate nitrogen (NO3-N). This paper follows a previous paper in which two instrumented stratified sand filter columns (0.9 and 0.425 m deep, and both 0.3 m in diameter) were intermittently loaded with synthetic dairy parlor washings at a number of hydraulic loading rates, leading to a TN reduction of 27 to 41%. In the present study, under a chemical oxygen demand (COD) of 23.4 g m(-2) d(-1), the TN was reduced by 83.2% when three-quarters of the sand filter effluent was recirculated through an anoxic zone. This produced an effluent NO3-N concentration of 60 mg L(-1). With recirculation, the improvement in the removal of organic matter and ammonia N (NH4-N) is minimal. Recirculating sand filters appear to offer a mechanically simple and effective method for the removal of nitrogen from dairy parlor effluents and are a significant improvement over a single-pass sand filter.  相似文献   

4.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

5.
We studied the long-term in situ accumulation of Cu, Cr, Ni, and Zn in the soil profile of a large-scale effluent recharge basin after 24 yr of operation in a wastewater reclamation plant using the Soil Aquifer System approach in the Coastal Plain of Israel. The objective was to quantify metals accumulation in the basin's soil profile, clarify retention mechanisms, and calculate material balances and metal removal efficiency as the metal loads increase. Effluent recharge led to measurable accumulation, relative to the pristine soil, of Ni and Zn in the 0- to 4-m soil profile, with concentration increases of 0.3 to 1.3 mg kg(-1) and 2.9 to 6.4 mg kg(-1), respectively. Copper accumulated only in the 0- to 1-m top soil layer, with concentration increase of 0.28 to 0.76 mg kg(-1). Chromium concentration increased by 3.1 to 7.3 mg kg(-1) in the 0- to 1-m horizon and 0.9 to 2.3 mg kg(-1) at deeper horizons. Sequential selective extraction showed Cu tended to be preferentially retained by Fe oxides and organic matter (OM), Cr by OM, Ni by OM, and carbonate and Zn by carbonate. The average total retained amounts of Cu, Cr, Ni, and Zn were 0.7 +/- 1.0, 13.6 +/- 4.8, 4.3 +/- 3.6, and 28.7 +/- 5.4 g per a representative unit soil slab (1 m(2) x 4 m) of the basin, respectively. This amounts to 3.6 +/- 4.9%, 79.5 +/- 28.0%, 8.0 +/- 6.9%, and 9.3 +/- 1.8% of the Cu, Cr, Ni, and Zn loads, respectively, applied during 24 yr of effluent recharge (total of approximately 1880 m effluent load). The low long-term overall removal efficiency of the metals from the recharged effluent in the top horizon may be due to the metals' low concentrations in the recharged effluent and the low adsorption affinity and retention capacity of the sandy soil toward them. This leads to attainment of a quasi-equilibrium and a steady state in element distribution between the recharged effluent solution and the soil after few years of recharge and relatively small cumulative effluent loadings.  相似文献   

6.
序批式生物膜法处理油田采油废水   总被引:5,自引:2,他引:5  
采用序批式生物膜(SBBR)法处理油田采油废水。研究并开发了特殊活性污泥的培养和驯化方法。在被处理的污水中加入微生物促生剂FYS-5,可迅速培养出处理采油废水的微生物,用此种方法培养出的活性污泥的活性高,去除有毒有害物质的能力强,能够提高处理效率,保持良好的微生物生长状况。在SBBR装置进水COD容积负荷为0.5kg/(m3·d)及进水COD为500mg/L左右的条件下,经过近两个月的连续运转,COD平均去除率超过80%,出水中COD低于100mg/L,符合GB8978-1996《污水综合排放标准》的要求,经过处理的污水可以直接排放。  相似文献   

7.
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.  相似文献   

8.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

9.
The aim of this research was to determine the performance of a submerged biological aerated filter, composed of a double-layer bed. This bed is made up of a top layer of ceramic material and a bottom layer of plastic material (both from previously used waste material). Effluent concentrations are presented related to the volumetric and hydraulic loads applied. The results were very satisfactory. If effluent concentrations of under 20 mg TBOD5/L and 25 mg SS/L are to be achieved, 4.87 kg TBOD5/m3/d and 3.0 kg SS/m3/d could be applied, respectively. For that maximum TBOD5 volumetric load that can be applied, a very reasonable consumption value of 1.0 kg O2/kg TBOD5, eliminated was obtained. The counter-current flow system outperformed the co-current flow system with respect to TBOD5 and SS removal. The tests were performed at a pilot plant with full scale height. The influent used was primary effluent of a conventional treatment plant. A multivariant analysis (ANOVA) was applied to the results.  相似文献   

10.
Treatment of tannery wastewater is problematic due to high and variable concentrations of complex pollutants often combined with high salinity levels. Two series of horizontal subsurface flow constructed wetlands (CWs) planted with Arundo donax and Sarcocornia fruticosa were set up after a conventional biological treatment system operating at a tannery site. The aim of the CWs was polishing organics and nitrogen from the high salinity effluent (2.2-6.6?g Cl(-)?L(-1)). Both plant species established and grew well in the CW. Arundo, however, had more vigorous growth and a higher capacity to take up nutrients. The CWs were efficient in removing COD and BOD(5) with removal efficiencies varying between 51 and 80% for COD (inlet: 68-425?mg?L(-1)) and between 53 and 90% for BOD(5) (inlet: 16-220?mg?L(-1)). Mass removal rates were up to 615?kg COD ha(-1)?d(-1) and 363 BOD(5) kg?ha(-1)?d(-1). Removal efficiencies were 40-93% for total P, 31-89% for NH(4)(+) and 41-90% for Total Kjeldahl Nitrogen. CW systems planted with salt tolerant plant species are a promising solution for polishing saline secondary effluent from the tannery industry to levels fulfilling the discharge standards.  相似文献   

11.
Manure use on cropland has raised concern about nutrient contamination of surface and ground waters. Warm-season perennial grasses may be useful in filter strips to trap manure nutrients and as biomass feedstock for nutrient removal. We explored the use of 'Alamo' switchgrass (Panicum virgatum L.) in a biomass production-filter strip system treated with dairy manure. We measured changes in extractable P in the soil, NO3 -N in soil water, and changes in total reactive P and chemical oxygen demand (COD) of runoff water before and after a switchgrass filter strip. Five rates of dairy manure (target rates of 0, 50, 100, 150, and 200 kg N ha(-1) from solid manure in 1995; 0, 75, 150, 300, and 600 kg N ha(-1) from lagoon effluent in 1996 and 1997) were surface-applied to field plots of switchgrass (5.2 by 16.4 m) with a 5.2- by 16.4-m switchgrass filter strip below the manured area. Yield of switchgrass from the manured area increased linearly with increasing manure rate in each year. Soil water samples collected at 46 or 91 cm below the soil surface on 30 dates indicated < 3 mg L(-1) of NO3-N in all plots. Concentrations of total reactive P in surface runoff water were reduced an average of 47% for the 150 kg N rate and 76% for the 600 kg N rate in 1996 and 1997 after passing through the strip. Manure could effectively substitute for inorganic fertilizer in switchgrass biomass production with dual use of the switchgrass as a vegetative filter strip.  相似文献   

12.
In manure disposal systems, denitrification is a major pathway for N loss and to reduce N transport to surface and ground water. We measured denitrification and the changes in soil N pools in a liquid manure disposal system at the interface of a pasture and a riparian forest. Liquid swine manure was applied weekly at two rates (approximately 800 and 1600 kg N ha-1 yr-1) to triplicate plots of overland flow treatment systems with three different vegetation treatments. Denitrification (acetylene block technique on intact cores) and soil N pools were determined bimonthly for 3 yr. The higher rate of manure application had higher denitrification rates and higher soil nitrate. Depth 1 soil (0-6 cm) had higher denitrification, nitrate, and ammonium than depth 2 soil (6-12 cm). The vegetation treatment consisting of 20 m of grass and 10 m of forest had lower denitrification. Denitrification did not vary significantly with position in the plot (7, 14, 21, and 28 m downslope), but nitrate decreased in the downslope direction while ammonium increased downslope. Denitrification ranged from 4 to 12% of total N applied in the manure. Denitrification rates were similar to those from a nearby dairy manure irrigation site, but were generally a lower percent of N applied, especially at the high swine effluent rate. Denitrification rates for these soils range from 40 to 200 kg N ha-1 yr-1 for the top 12 cm of soil treated with typical liquid manure that is high in ammonium and low in nitrate.  相似文献   

13.
ABSTRACT: The domestic sewage of the city of Beer-Sheva, Israel, which is located in an arid region, is treated in a series of facultative ponds. The treated effluent is stored temporarily in an open surface earthen reservoir (about 0.5 ± 106 m3 in volume) and then used for irrigation. The effluent is applied via sprinkler and trickle irrigation systems. The main crops irrigated are cotton, wheat, alfalfa, and corn. Total cotton yield is over 5500 kg/ha, and the wheat grain yield is over 7500 kg/ha. The amount of effluent applied is about 6500 m3/ha for cotton (including preplant irrigation), and the wheat receives about 4500 m3/ha via irrigation and an additional 2000 m3/ha from precipitation. Due to the nutrient content in the effluent, the above yields are obtained without any additional fertilization.  相似文献   

14.
Land treatment of municipal wastewater effluent is a proven method for augmenting freshwater resources and avoiding direct nutrient discharges to surface waters. We assessed changes in soil test phosphorus (P) of the Ap horizon of cropped fields continuously irrigated for 26 yr with secondary effluent from the Penn State University wastewater treatment plant. For annual P additions averaging 97 kg P ha(-1), Mehlich-3 P (M3P) response in the 0- to 20-cm surface soil (initially < 20 mg kg(-1)) was represented by two lines. For the first 12 yr of irrigation, soil test P increased, with 14.5 kg P ha(-1) needed to increase M3P by 1 mg P kg(-1). After the initial buildup, M3P maintained a quasi-steady-state value of approximately 110 mg kg(-1). Over time, the surface soil equilibrium P concentration at zero sorption increased markedly (from < 1 to 5.5 mg P L(-1)), and extractable aluminum (Al) decreased significantly (P < 0.001). Speciation modeling using Visual MINTEQ suggests complexation of Al by dissolved organic carbon at site pH conditions. Loss of Al from the surface layer lowered its P-sorbing capacity, causing added effluent-P to move into the subsoil. Results suggest that current management practices can continue for many years without exceeding the surface soil M3P environmental threshold (200 mg kg(-1)) used in state P-based nutrient policies.  相似文献   

15.
There is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round. The soil is a deep, excessively drained sand (thermic, uncoated Typic Quartzipsamment). Mean P concentration in soil water below the rooting zone (152-cm depth) was < or = 0.1 mg L(-1) during 11 3-mo periods. Mehlich-1-extractable (M1) P, Al, and Ca in the topsoil increased over time but did not change in subsoil depths of 25 to 51, 51 to 71, 71 to 97, and 97 to 122 cm. Topsoil Ca increased as effluent rate increased. High Ca levels were found in dairy effluent (avg.: 305 mg L(-1)) and supplemental irrigation water (avg.: 145 mg L(-1)) which likely played a role in retaining P in the topsoil. An effect of effluent rate on P and Al concentrations in the topsoil was not detected, probably due to large and variable quantities present at project initiation. The P retention capacity (i.e., Al plus Fe) increased in the topsoil because Al increased. Dairy effluent contained Al (avg.: 31 mg L(-1)). Phosphorus saturation ratio (PSR) increased over time in the topsoil but not in subsoil layers. Regardless of effluent rate, the P retention capacity and PSR of subsoil, which contained 119 to 229 mg kg(-1) of Al, should be taken into account when assessing the risk of P moving below the rooting zone of most forage crops.  相似文献   

16.
Recycling of kitchen garbage is an urgent task for reducing public spending and environmental burdens by incineration and/or landfill. There is an interesting regional effort in Ogawa, Saitama prefecture, Japan, in which source-separated kitchen garbage is anaerobically fermented with a biogas plant and the resultant effluent is used as a quick-release organic fertilizer by surrounding farmers. However, scientific assessments of fertilizer values and risks in the use of the effluent were lacking. Thus, a field experiment was conducted from 2003 to 2004 in Tohoku National Agricultural Research Center to grow spinach (Spinacia oleracea L.) and komatsuna (Brassica rapa var. perviridis L. H. Bailey) for evaluating the fertilizer value of the kitchen garbage effluent (KGE), nitrate, coliform group (CG), Escherichia coli, fecal streptococci (FS), and Vibrio parahaemolyticus concentrations of KGE and in the soil and the plant leaves. A cattle manure effluent (CME) and chemical fertilizers (NPK) were used as controls. Total nitrogen (N) and ammonium N concentrations of the KGE were 1.47 and 1.46 g kg(-1), respectively. The bacteria tested were detected in both biogas effluents in the order of 2 to 3 log CFU g(-1), but there was little evidence that the biogas effluents increased these bacteria in the soil and the plant leaves. At the rate of 22 g N m(-2), yield, total N uptake, apparent N recovery rate, and leaf nitrate ion concentration at harvest of spinach and komatsuna in the KGE plot were mostly comparable to those in the NPK and CME plots. We conclude that the KGE is a quick-release N fertilizer comparable to chemical fertilizers and does not cause contamination of CG, E. coli, FS, or V. parahaemolyticus in the soil and spinach and komatsuna leaves.  相似文献   

17.
Selenium (Se), boron (B), and salinity contamination of agricultural drainage water is potentially hazardous for water reuse strategies in central California. To demonstrate the feasibility of using plants to extract Se from drainage water, Se accumulation was determined in canola (Brassica napus L.) and broccoli (Brassica oleracea L.) irrigated with drainage effluent in the San Joaquin Valley, California. In the 2-yr field study, both crops were irrigated with a typical drainage water containing Se (150 microg L(-1)), B (5 mg L(-1)), and a sulfate dominated salinity (EC of 7 dS m(-1)). Total dry matter yields were at least 11 Mg ha(-1) for both canola and broccoli, and plant tissue Se concentrations did not exceed 7 mg kg(-1) DM for either crop. Based on the amount of soluble Se applied to crops with drainage water and the estimated amount of soluble Se remaining in soil to a depth of 90 cm at harvest, both canola and broccoli accumulated at least 40% of the estimated soluble Se lost from the soil for both years. Applied Se not accounted for in plant tissue or as soluble Se in the soil was presumably lost by biological volatilization. This study suggests that irrigating two high value crops such as canola and broccoli with Se-laden effluent helps manage Se-laden effluent requiring treatment, and also produces economically viable Se-enriched crops. Future research should focus on managing residual salt and B in the soil for sustaining long time water reuse strategies.  相似文献   

18.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

19.
Urban ecosystems are rapidly expanding and their effects on atmospheric nitrous oxide (N2O) inventories are unknown. Our objectives were to: (i) measure the magnitude, seasonal patterns, and annual emissions of N2O in turfgrass; (ii) evaluate effects of fertilization with a high and low rate of urea N; and (iii) evaluate effects of urea and ammonium sulfate on N2O emissions in turfgrass. Nitrogen fertilizers were applied to turfgrass: (i) urea, high rate (UH; 250 kg N ha(-1) yr(-1)); (ii) urea, low rate (UL; 50 kg N ha(-1) yr(-1)); and (iii) ammonium sulfate, high rate (AS; 250 kg N ha(-1) y(-1)); high N rates were applied in five split applications. Soil fluxes of N2O were measured weekly for 1 yr using static surface chambers and analyzing N2O by gas chromatography. Fluxes of N2O ranged from -22 microg N2O-N m(-2) h(-1) during winter to 407 microg N2O-N m(-2) h(-1) after fall fertilization. Nitrogen fertilization increased N2O emissions by up to 15 times within 3 d, although the amount of increase differed after each fertilization. Increases were greater when significant precipitation occurred within 3 d after fertilization. Cumulative annual emissions of N2O-N were 1.65 kg ha(-1) in UH, 1.60 kg ha(-1) in AS, and 1.01 kg ha(-1) in UL. Thus, annual N2O emissions increased 63% in turfgrass fertilized at the high compared with the low rate of urea, but no significant effects were observed between the two fertilizer types. Results suggest that N fertilization rates may be managed to mitigate N2O emissions in turfgrass ecosystems.  相似文献   

20.
采用将脱硫废液与炼油废水按比例混合之后对其进行处理的方法,通过批式试验,考查混合废液的BOD5/COD指标及其COD、NH3-N、S2-的去除率。筛选合适的混合液配比,分别对500︰1和800︰1的混合废液进行了模型试验,分析了COD去除效果。结果表明:800︰1的混合废液在10d之后,出水COD为134mg/L,达到了《污水综合排放标准》(GB8978—1996)二级标准要求。最终确定炼油废水与脱硫废液混合的合适比例应不低于800︰1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号