首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biogeochemical reductive dechlorination (BiRD) is a new remediation approach for chlorinated aliphatic hydrocarbons (CAHs). The approach stimulates common sulfate-reducing soil bacteria, facilitating the geochemical conversion of native iron minerals into iron sulfides. Iron sulfides have the ability to chemically reduce many common CAH compounds including PCE, TCE, DCE, similar to zero valent iron (Fe(0)). Results of a field test at Dover Air Force Base, Dover, Delaware, are given in this paper. BiRD was stimulated by direct injection of Epson salt (MgSO(4).7H(2)O) and sodium (L) lactate (NaC(3)H(5)O(3)) in five injection wells. Sediment was sampled before and 8 months after injection. Significant iron sulfide minerals developed in the sandy aquifer matrix. From ground water analyses, treatment began a few weeks after injection with up to 95% reduction in PCE, TCE, and cDCE in less than 1 year. More complete CAH treatment is likely at a larger scale than this demonstration.  相似文献   

2.
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes.  相似文献   

3.
The mass transfer rate from residual dense non-aqueous phase liquids (DNAPLs) to the mobile aqueous phase is an important parameter for the efficiency of surfactant-enhanced remediation through solubilization of this type of contamination. The mass transfer kinetics are highly dependent on the dimensionality of the system. In this study, irregularly shaped residual TCE saturations in two-dimensional saturated flow fields were flushed with a 2% polyoxyethylene sorbitan (20) monooleate (POESMO) solution until complete removal had been achieved. A numerical model was developed and used for the simulation of the various surfactant-flushing experiments with different initial saturation patterns and flow rates. Through optimization against in situ concentration and saturation data, a phenomenological power-law model for the relationship between the mass transfer rate from the DNAPL to the mobile aqueous phase on the one hand and the residual DNAPL saturation and the flow velocity on the other hand was derived. The obtained mass transfer rate parameters provide a reasonable fit to the experimental data, predicting the cleanup time and the general saturation and concentration pattern quite well but failing to predict the concentration curves at every individual sampling port. The obtained mass transfer rate model gives smaller values for the predicted mass transfer rate but shows a comparable dependence on water flow and saturation as in earlier published one-dimensional column experiments with identical characteristics for porous medium, DNAPL and surfactant. Mass transfer rate predictions were about one order of magnitude lower in the 2-D flow cell experiment than in 1-D column experiments. These results give an indication for the importance of dimensionality during surfactant remediation.  相似文献   

4.
A polyphasic approach based on cultivation and direct recovery of 16S rRNA gene sequences was utilized for microbial characterization of an aquifer contaminated with chlorinated ethenes. This work was conducted in order to support the evaluation of natural attenuation of chlorinated ethenes in groundwater at Area 6 at Dover Air Force Base (Dover, DE). Results from these studies demonstrated the aquifer contained relatively low biomass (e.g. direct microscopic counts of < 10(7) bacteria/g of sediment) comprised of a physiologically diverse group of microorganisms including iron reducers, acetogens, sulfate reducers, denitrifiers, aerobic and anaerobic heterotrophs. Laboratory microcosms prepared with authentic sediment and groundwater provided direct microbiological evidence that the mineralization of vinyl chloride and cis-dichloroethene as well as each step in the complete reductive dechlorination of tetracloroethene to ethene can occur in the Area 6 aquifer. Enrichment cultures capable of the oxidative degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) were obtained from groundwater across the aquifer demonstrating the possible importance of direct, non-cometabolic oxidation of cis-DCE and VC in natural attenuation. Culture-independent analyses based upon recovery of 16S rRNA gene sequences revealed the presence of anaerobic organisms distributed primarily between two major bacterial divisions: the delta subdivision of the Proteobacteria and low-G + C gram positive. Recovery of sequences affiliated with phylogenetic groups containing known anaerobic-halorespiring organisms such as Desulfitobacterium, Dehalobacter, and certain groups of iron reducers provided qualitative support for a role of reductive dechlorination processes in the aquifer. This molecular data is suggestive of a functional linkage between the microbiology of the site and the apparent natural attenuation process. The presence and distribution of microorganisms were found to be consistent with a microbially driven attenuation of chlorinated ethenes within the aquifer and in accord with a conceptual model of aquifer geochemistry which suggest that both reductive and oxidative mechanisms are involved in heterogeneous, spatially distributed processes across the aquifer.  相似文献   

5.
The occurrence of Dense Non-Aqueous Phase Liquid (DNAPL) contaminations in the subsurface is a threat for drinkwater resources in the western world. Surfactant-Enhanced Aquifer Remediation (SEAR) is widely considered as one of the most promising techniques to remediate DNAPL contaminations in-situ, be it with considerable additional costs compared to classical pump-and-treat remediations. A cost-effective design of the remediation set-up is therefore essential. In this work, a pilot SEAR test is executed at a DNAPL contaminated site in Belgium in order to collect data for the calibration of a multi-phase multi-component model. The calibrated model is used to assess a series of scenario-analyses for the full-scale remediation of the site. The remediation variables that were varied were the injection and extraction rate, the injection and extraction duration, and the surfactant injection concentrations. A constrained multi-objective optimization of the model was applied to obtain a Pareto set of optimal remediation strategies with different weights for the two objectives of the remediation: (i) the maximal removal of DNAPL and (ii) a total minimal cost. These Pareto curves can help decision makers to select an optimal remediation strategy in terms of cost and remediation efficiency. The Pareto front shows a considerable trade-off between the total remediation cost and the removed DNAPL mass.  相似文献   

6.
Biogeochemical reductive dechlorination (BiRD) is a newly recognized method for the remediation or natural attenuation of chlorinated solvents. Chlorinated solvents are rapidly treated by abiotic reaction with reduced mineral iron sulfides. Iron sulfides are formed by naturally occurring sulfate-reducing bacteria when sufficient SO(4)(2-) and organic carbon are present or supplied to sediments containing mineral iron. An example of site characterization focusing on BiRD is presented focusing on mineral phases. Methods demonstrated here may be employed at other sites to evaluate naturally occurring BiRD or to evaluate an engineered BiRD remediation. A field investigation was performed at a TCE contaminated site at Altus AFB with naturally high concentrations of SO(4)(2-) and Fe(III) minerals and where an accidental fuel spill provided organic carbon. In the area of this fuel spill significant mineral iron sulfides were found, sulfate was almost completely removed, and TCE was absent. Only small amounts of daughter products were found, further indicating that the BiRD pathway was operative. Mass balance data indicates all of the remaining TCE (182 kg) could be treated by the remaining FeS (66.5 kg) in the upper aquifer; however, the FeS was not co-located with TCE to enable complete reaction. Laboratory microcosm tests with FeS amended and FeS-rich sediment from Altus AFB also suggest that BiRD is capable of destroying TCE. The results suggest that an engineered BiRD treatment is possible for this site.  相似文献   

7.
Data on visits to New York City metropolitan area hospital emergency rooms for asthmatic attacks were analyzed to identify asthma “events”: days when the number of such visits was unusually high. In the fall season such days tended to occur simultaneously at all hospitals of the study, and thus can be plausibly associated with some environmental agent acting simultaneously throughout the city. Data on sulfur dioxide and particulate concentrations from the 40-station New York City Aerometric Network were used as pollution measures, and a search for a relationship between asthma “events” and air pollution levels on the same day and on the preceding day was made using standard statistical techniques. No relationship was found.  相似文献   

8.
An area where a free-product accumulation of trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) occurs at the bottom of a 10-m-thick surficial sand aquifer was studied to determine the integrity of the underlying, 20-m-thick, clayey silt aquitard formed of glaciolacustrine sediment. TCE concentration-versus-depth profiles determined from aquitard cores collected at five locations indicated penetration of detectable TCE 2.5 to 3.0 m into the aquitard. Two of the profiles show persistent DNAPL at the aquitard interface, while two others indicate that DNAPL, present initially, was completely dissolved away producing concentration declines at the aquitard interface. The fifth profile suggests shallow DNAPL penetration (<0.5 m) into the aquitard, however, this penetration, which was likely caused by cross-contamination during core collection or cone penetrometry (CPT) of the aquitard interface, did not increase the maximum depth of TCE penetration. Combining the field profiles with one-dimensional model simulations, downward migration of the aqueous TCE front, defined as the EPA MCL of 5 microg/l, which was below the analytical detection limit, was projected to a distance between 4 and 5 m below the top of the aquitard. Using a single set of estimated aquitard parameter values, simulations of aqueous TCE migration into the aquitard provided a good fit to four of the field profiles with a migration time of 35 to 45 years, consistent with the history of TCE use at the site. These simulations indicate aqueous TCE migration is diffusion-dominated with only small advective influence by the downward groundwater velocity of 2 to 3 cm/year or less in the aquitard due to pumping of the underlying aquifer to supply water to the facility in the past 50 years. The applicability of the parameter values was confirmed by in situ diffusion experiments of 1-year duration, in which stainless steel cylinders containing DNAPL were inserted into the aquitard. The diffusion-dominated nature of the profiles indicates that the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells, concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after the breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells , concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard.  相似文献   

9.
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The delta(13)C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of -31.3 +/- 0.5 per thousand (n=40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in (13)C of MTBE by 40.6 per thousand, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 microg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of delta(13)C for TBA in groundwater samples in the "With ethanol lane" was -26.0 +/- 1.0 per thousand (n=32). Uniform delta(13)C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of -9.2 per thousand to -15.6 per thousand, and values of delta(13)C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year(-1) (n=18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year(-1) calculated using contaminant mass-discharge for the "With ethanol lane".  相似文献   

10.
The Digital Opacity Compliance System (DOCS) is an innovative method that uses digital imaging technology to quantify visible opacity of stationary sources. DOCS, which has been demonstrated at pilot and full scale as a technically defensible and economically attractive alternative to U.S. Environmental Protection Agency (EPA) Reference Method 9 (Method 9), uses commercial-off-the-shelf (COTS) digital cameras in combination with a user-friendly computer software package to determine opacity. To date, all DOCS field testing has been conducted using two models of digital cameras, notably, Kodak Models DC265 and DC290, both of which are no longer commercially available. To ensure that field-validated digital cameras will be available to future DOCS users, a suite of new digital cameras was evaluated with the opacity determination software including the following: (1) Sony Model Cybershot Model DSC-WI, (2) Nikon Model Coolpix 5200, (3) Fuji Finepix Model E500, and (4) Kodak Model DX6490. Within the opacity range of regulatory interest, that is, 0-40%, the Sony Cybershot Model DSC-WI and Nikon Coolpix Model 5200 digital cameras were found to generate plume photographs of which the DOCS opacity analysis yielded results that were statistically equivalent to the previously field-validated Kodak Model DC290. In contrast, the Fuji Finepix Model E500 generated plume photographs of which the DOCS opacity analysis were, on average, 2.2% less than those generated by the Kodak Model DC290 photographs, a difference that was determined to be statistically significant. Over the same opacity range, photographs taken by the Kodak Model DX6490 yielded DOCS opacity readings that were found to be statistically equivalent to a Method 9-certified transmissometer. Based on the results from the current digital camera validation testing approach, EPA has developed a new camera-based visible opacity measurement method titled "Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems." The proposed method is expected to be promulgated after closure of the public comment period.  相似文献   

11.
Vanadium compounds are toxic pollutants which require engineering control in the design stage. In the lower Delaware River Valley, the main sources are presently the combustion of vanadium rich fuel oils and the catalytic processing of high vanadium crudes. These and other Industrial emissions, result in atmospheric vanadium concentrations which have varied from 0.133 μg/m3 to 0.557 μg/m3 between 1958 and 1969. Compounds of vanadium, principally with oxygen and sulfur, are considered. The dominance of oxygen compounds over sulfur compounds as derived from equilibrium data, and the tendency of vanadium oxides to move toward vanadium’s maximum valence of +5, indicate the prevalence of V205 as the emission compound.  相似文献   

12.
Controlled release, blind test of DNAPL remediation by ethanol flushing   总被引:1,自引:0,他引:1  
A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.  相似文献   

13.
The partitioning tracer technique for dense nonaqueous phase liquid (DNAPL) characterization was evaluated in an isolated test cell, in which controlled releases of perchloroethylene (PCE) had occurred. Four partitioning tracer tests were conducted, two using an inverted, double five-spot pumping pattern, and two using vertical circulation wells. Two of the four tests were conducted prior to remedial activities, and two were conducted after. Each test was conducted as a "blind test" where researchers conducting the partitioning tracer tests had no knowledge of the volume, method of release, nor resulting spatial distribution of DNAPL. Multiple partitioning tracers were used in each test, and the DNAPL volume estimates varied significantly within each test based on the different partitioning tracers. The tracers with large partitioning coefficients generally predicted a smaller volume of PCE than that expected based on the actual release volume. However, these predictions were made for low DNAPL saturations (average saturation was approximately 0.003), under conditions near the limits of the method's application. Furthermore, there were several factors that may have hindered prediction accuracy, including tracer degradation and remedial fluid interference.  相似文献   

14.
15.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   

16.
In an effort to help with the development of effective dip vat management and waste disposal strategies this study determined how solution properties such as pH, buffer composition, ionic strength, temperature, solubility in organic solvents and the addition of commonly used solubilizing agents influenced the hydrolysis of amitraz. Amitraz degrade by means of hydrolysis described by a pseudo-first order rate process and a type ABCD pH rate profile. Hydrolysis increased with temperature and was fastest at low pH, slowest at neutral to slightly alkaline pH, and slightly increased above pH 10. However, buffer concentration and ionic strength influenced the hydrolysis rate and had to be accounted for before constructing a pH rate profile. Hydrolysis seems to depend on the dielectric constant of solvent mixtures and was fastest in water, slower in propylene glycol and ethanol solutions, and slowest in DMSO mixtures. In surfactant solutions, anionic micelles enhanced and cationic micelles retarded the hydrolysis rate. The magnitude of micellar effects decreased with increasing concentrations of the surfactants. The increased solubility and faster hydrolysis of amitraz in the sodium lauryl sulfate solutions showed that anionic surfactants potentially could be used for cleaning up amitraz spills, because it both solubilized the drug and catalyzed hydrolysis.  相似文献   

17.
This study comprises the first application of the Passive Flux Meter (PFM) for the measurement of chlorinated aliphatic hydrocarbon (CAH) mass fluxes and Darcy water fluxes in groundwater at a European field site. The PFM was originally developed and applied to measurements near source zones. The focus of the PFM is extended from near source to plume zones. For this purpose, 48 PFMs of 1.4 m length were constructed and installed in eight different monitoring wells in the source and plume zone of a CAH-contaminated field site located in France. The PFMs were retrieved, sampled, and analyzed after 3 to 11 weeks of exposure time, depending on the expected contaminant flux. PFM evaluation criteria include analytical, technical, and practical aspects as well as conditions and applicability. PFM flux data were compared with so-called traditional soil and groundwater concentration data obtained using active sampling methods. The PFMs deliver reasonable results for source as well as plume zones. The limiting factor in the PFM applicability is the exposure time together with the groundwater flux. Measured groundwater velocities at the field site range from 2 to 41 cm/day. Measured contaminant flux data raise up to 13 g/m2/day for perchloroethylene in the plume zone. Calculated PFM flux averaged concentration data and traditional concentration data were of similar magnitude for most wells. However, both datasets need to be compared with reservation because of the different sampling nature and time. Two important issues are the PFM tracer loss during installation/extraction and the deviation of the groundwater flow field when passing the monitoring well and PFM. The demonstration of the PFM at a CAH-contaminated field site in Europe confirmed the efficiency of the flux measurement technique for source as well as plume zones. The PFM can be applied without concerns in monitoring wells with European standards. The acquired flux data are of great value for the purpose of site characterization and mass discharge modeling, and can be used in combination with traditional soil and groundwater sampling methods.  相似文献   

18.
19.
Environmental Science and Pollution Research - Permanganate is an oxidant usually applied for in situ soil remediation due to its persistence underground. It has already shown great efficiency for...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号