首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
不同碳源对生物反硝化的影响   总被引:31,自引:3,他引:31  
徐亚同 《环境科学》1994,15(2):29-32,44
在悬浮污泥系统中,当pH、温度适宜,碳源无限制并采用单一类碳源时,反硝化速率和耗碳速率动力学呈零级反应。混合挥发性脂肪酸碳源的反硝化速率比组成它的单一脂肪酸的反硝化速率高。挥发性脂肪酸中,乙酸的反硝化速率最高。挥发酸的反硝化速率比相应的醇类为高。本文还讨论了降低反硝化系统碳源消耗、减少处理成本的方法。  相似文献   

2.
碳源类型对低温条件下生物反硝化的影响   总被引:13,自引:6,他引:13  
为了研究低温环境下反硝化细菌对各种碳源的直接反应,利用Carrousel氧化沟系统的活性污泥,以甲醇、乙醇、乙酸钠、丙酸钠、葡萄糖、生活污水及内源物质为碳源,在15.4℃±0.8℃低温状态下开展序批式缺氧反硝化试验.结果表明,乙酸钠为碳源时的最大比反硝化速率(maximum specific denitrification rate, MSDR)最高,达6.51 mg/(g·h),但是其反硝化效率(denitrification yield, DY)最低,只有0.48,而且存在亚硝酸盐积累现象.甲醇为碳源时的MSDR相比其他几种单一碳源要低,只有0.91 mg/(g·h),反硝化细菌对甲醇碳源需要一定时间的适应.当不投加任何外碳源时,反硝化细菌能利用自身体内的原生物质进行内源反硝化,其反硝化速率最低.而以经过厌氧发酵的生活污水作为碳源,其MSDR为3.63 mg/(g·h),达到挥发性脂肪酸(volatile fatty acids, VFAs)作碳源时的水平.低温(15.4℃±0.8℃)下的MSDR相对20℃以上的要低许多,而通过不同的碳源补偿均能在一定程度上改善脱氮效果.  相似文献   

3.
张婷婷  张建  杨芳  谢慧君  胡振  李一冉 《环境科学》2012,33(4):1283-1287
污水生物脱氮过程是大气中的氧化亚氮(N2O)的一个重要来源.以anoxic-oxic sequencing batch reactors(A/O SBRs)工艺为研究对象,考察了5组不同温度(10、20、25、30、35℃)条件下系统的污染物去除效果和氧化亚氮释放情况.结果表明,温度对COD的去除无显著影响,但对氮素的去除有明显影响:在一定范围内,随温度的升高氮的去除率升高,但温度超过25℃后,随着温度的上升氮的去除效果下降;温度对氧化亚氮的释放量有重要影响,随温度的升高氧化亚氮的释放量逐渐降低[释放量(以MLSS计)依次为:530.1、260.8、218.3、104.7、57.7μg.g-1].对于A/O SBRs工艺,氧化亚氮的释放主要集中的好氧段,缺氧段几乎无氧化亚氮释放.  相似文献   

4.
以3类常用的碳源(乙酸钠、葡萄糖和甲醇)为研究对象,在3个稳定运行的SBR系统内考察了碳源种类对污水生物脱氮过程中N_2O释放的影响。结果显示,各系统内N_2O的释放主要发生在好氧硝化阶段,且在以乙酸钠为碳源的系统内氨氧化速率最快,TN去除率最大,但同时N_2O的释放速率、累积释放量(4.44 mg)和转化率(1.3%)也最大。而以甲醇为碳源的小试系统脱氮效果较差,TN去除率仅为59.5%,但N_2O的释放速率、累积释放量和转化率均最低。在实际污水处理过程中,当以温室气体N_2O释放作为判断标准时,此研究结果可为碳源的选择提供依据。  相似文献   

5.
碳源种类及其浓度影响污水处理反硝化过程中一氧化二氮(N2O)的释放。以往关于碳源对反硝化过程中N2O释放特性的研究多采用单一碳源驯化活性污泥,采用混合碳源条件驯化的研究尚少。利用序批式反应器,以蔗糖和乙酸钠为混合碳源驯化反硝化菌。采用批处理试验研究了不同碳源(乙酸钠、葡萄糖和两者混合)在不同碳氮比(COD/N)条件下,利用硝酸盐氮(NO3--N)或亚硝酸盐氮(NO2--N)进行反硝化时N2O的释放。以NO2--N为电子受体进行反硝化时,N2O释放量远大于以NO3--N为电子受体进行反硝化时的释放量。碳源种类影响N2O释放,其释放比从低到高依次为乙酸钠、混合碳源和葡萄糖。以乙酸钠为碳源且当COD/N较低时,由于NO2--N积累和内源反硝化,导致较多N2O的释放,而在碳源相对充足情况下释放量较少。以葡萄糖为碳源时,由于反硝化速率较低,N2O释放量大于利用乙酸钠时的释放量,同时释放量随COD/N比的增加而增加。在混合碳源条件下,反硝化菌优先利用乙酸钠进行反硝化,N2O释放量随COD/N比的增加而降低。  相似文献   

6.
不同污水生物脱氮工艺中N2O释放量及影响因素   总被引:19,自引:2,他引:19  
微生物的硝化及反硝化过程为污水处理过程中N2O的主要产生源.从微生物学和生物化学反应的角度,阐述了硝化及反硝化过程中N2O的生成机理以及与N2O产生相关的关键酶的基本特性,同时给出了几种典型硝化及反硝化菌的N2O产生与释放情况.通过对实际污水处理厂、不同污水处理工艺,尤其是新工艺过程中N2O释放量及产因的分析,指出污水生物处理过程中N2O的释放量与污水水质、污水处理工艺、工艺的运行工况及微生物的种群结构有关,并对底物浓度、DO浓度、SRT等关键性因素进行了重点论述.在综合分析N2O产生机理及影响因素的基础上,从工艺运行工况及微生物种群优化2个角度,初步提出了控制污水生物处理过程中N2O释放的策略.  相似文献   

7.
在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中分别投加葡萄糖和丙酸钠启动SAD工艺.结果表明,常温条件(13~22℃)下,进水投加30 mg·L~(-1)葡萄糖,SAD工艺耦合效果良好,平均出水总氮浓度为6.41 mg·L~(-1).相较于厌氧氨氧化工艺,SAD工艺出水总氮浓度降低了42%;低温环境(10~13℃)中,投加30 mg·L~(-1)葡萄糖,SAD工艺稳定性受到破坏并向反硝化工艺转变;常低温环境(10~22℃)中,基质中投加30 mg·L~(-1)丙酸钠,SAD工艺均有良好的处理效果,平均出水总氮浓度为6.54mg·L~(-1),丙酸钠对低温SAD工艺影响较小.  相似文献   

8.
试验使用SBR反应器,采用乙酸钠、乙醇、葡萄糖和蔗糖4种常用的外加有机碳源,对反硝化反应中N2O释放过程进行研究。结果表明:4种碳源条件下,N2O积累量均呈先升高后降低最后保持稳定的趋势。N2O最大积累量分别为1.59,1.25,5.43,0.66 mg/L,最大转化率分别为1.61%、1.36%、5.44%和0.67%;最终积累量分别为1.02,0.67,3.12,0.49 mg/L,最终转化率分别为1.04%、0.73%、3.13%和0.50%。N2O释放量及转化率顺序均为葡萄糖>乙酸钠>乙醇>蔗糖。游离亚硝酸抑制、不同反硝化酶的电子竞争和微生物群落结构差异均是影响N2O释放的因素。  相似文献   

9.
污水有机碳源特征及温度对反硝化聚磷的影响   总被引:19,自引:2,他引:19  
为考察A2N连续流系统的主导生化反应过程及聚磷污泥的诸多特性,从而为反硝化除磷脱氮新工艺的应用推广提供可供参考的运行控制参数,首次采用A2N系统中的反硝化聚磷污泥(DPB污泥),以生活污水、乙酸以及细胞内碳源作为有机底物,利用批量静态试验展开对比研究结果表明,污水中的挥发性有机物含量越高,厌氧段初始的放磷速率越快,放磷越充分,后续反硝化脱氮和缺氧吸磷效果也将明显提高;而内源反硝化脱氮速率决定于细胞内PHB贮存量,当反硝化聚磷微生物细胞体内的PHB被耗尽,微生物处于极度饥饿状态,内源反硝化速率很低,同时也不发生吸磷反应.试验同时考察分析了2种温度条件--正常温度(25~26℃)和低温(8~10℃)下DPB的反硝化吸磷情况,发现反应系统在低温条件下将减小厌氧放磷和缺氧吸磷的生化反应速率,但并不对反硝化聚磷菌产生完全抑制作用,即低温对系统整体吸磷效果的负面影响不大.  相似文献   

10.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

11.
在以A/O方式运行的SBR工艺中,研究了3种不同进水碳氮比下硝化与反硝化过程中污泥羟胺氧化酶(HAO)活性变化、N2O的产生/释放规律及两者之间的关联性.结果表明,当C/N=3.5与C/N=9.5时,HAO平均酶活性分别为(283.77±19.64),(348.87±17.94)U/g MLSS,而C/N=6.5条件下的平均酶活性仅为(246.45±23.30)U/g MLSS,总体上3个条件下缺氧阶段HAO活性均较好氧阶段高;反应过程中HAO的活性变化趋势基本与气态N_2O释放速率、溶解态N_2O及亚硝氮的浓度变化趋势成正相关,在C/N=9.5下好氧段HAO活性与后三者呈现完全一致的变化规律.N_2O主要产生于好氧阶段进行的硝化过程,尤其是羟胺氧化是N_2O产生的主要环节;碳源相对不充分的条件下(如C/N=3.5),缺氧段N_2O的释放与HAO活性关系密切;碳源相对较充分的条件下,缺氧段N_2O的产生与HAO酶活性无明显关联.推测可能是因为缺乏电子受体NO_2~-而导致HAO酶未参与反应;在N_2O产生较多的条件下,HAO活性相对也较高.  相似文献   

12.
补充碳源提取液对人工湿地脱氮作用的影响   总被引:6,自引:1,他引:5  
为了提高人工湿地的脱氮效率,在不同条件下分别对美人蕉、香蒲及稻杆进行稀硫酸水解,以获得相应碳源提取液.正交实验表明,稀硫酸浓度的提高和水解时间的增加都会导致碳源释碳能力的提高,稻杆在5%稀硫酸溶液中水解30 min以上,释碳能力最高.通过观察,前2 d是系统脱氮反应高峰时段.对以NH4+-N和NO3--N为氮源的脱氮过程,随C/N比升高,NO3--N和TN去除率增长明显;而NH4+-N受溶解氧制约,去除有限;随C/N比升高,碳源对系统溶解氧的竞争会进一步抑制硝化反应的彻底进行.而对以NO3--N为氮源的反硝化过程,补充碳源对TN和NO3--N的去除有明显作用;TN去除率由54%提高到95%,NO3--N去除率由48%提高到96%;中间产物NO2--N的积累与NO3--N去除率有关;当NO3--N去除率较高时,NO2--N无积累.此外,基质反硝化强度也随C/N比升高呈上升趋势,湿地填料细沙层的反硝化强度略高于碎石层.  相似文献   

13.
Nitrous oxide(N2O) emission during denitrification is receiving intensive attention due to its high potential to cause greenhouse effects.In this study,denitrifiers were acclimated in sequencing batch reactors with methanol or acetate as the electron donor and nitrate as the electron acceptor.The effects of ammonium on N2O emission were examined in batch experiments with various electron donors.With the addition of ammonium,N2O emission increased under all the examined conditions compared to experiments without ammonium addition.With different electron donors,the highest ratio of N2O emission to the removed oxidized nitrogen was 0.70% for methanol,5.34% for acetate,and 34.79% for polyhydroxybutyrate.  相似文献   

14.
胶州湾河口潮滩沉积物中N_2O的产生和释放及其影响因素   总被引:2,自引:5,他引:2  
分别于2007年12月、2008年5月、9月和11月、2009年2月在胶州湾周边潮滩采集柱状沉积物进行培养实验,测定硝化、反硝化速率和沉积物-水界面N2O交换通量,并对其影响因素进行了初步探讨.结果表明:胶州湾周边河口潮滩沉积物中的反硝化速率明显高于硝化速率,二者均呈现明显的季节变化.大沽河口潮滩沉积物反硝化速率变化范...  相似文献   

15.
Bionitrification is considered to be a potential source of nitrous oxide (N2O) emissions, which are produced as a by-product during the nitrogen removal process. To investigate the production of N2O during the process of nitrogen removal via nitrite, a granular sludge was studied using a labscale sequence batch reactor operated with real-time control. The total production of N2O generated during the nitrification and denitrification processes were 1.724 mg/L and 0.125 mg/L, respectively, demonstrating that N2O is produced during both processes, with the nitrification phase generating larger amount. In addition, due to the NEO-N mass/oxidized ammonia mass ratio, it can be concluded that nitrite accumulation has a positive influence on N2O emissions. Results obtained from PCRDGGE analysis demonstrate that a specific Nitrosomonas microorganism is related to N2O emission.  相似文献   

16.
碳源对反硝化过程NO2-积累及出水pH值的影响   总被引:1,自引:0,他引:1  
马娟  宋相蕊  李璐 《中国环境科学》2014,34(10):2556-2561
采用序批式反应器(SBR),考察了以甲醇、乙醇、乙酸钠为碳源的电子供体对反硝化过程中亚硝酸盐积累及出水pH值的影响.结果表明,碳源充足时,亚硝酸盐积累量与碳源类型及污泥负荷有关.进水NO3--N为20mg/L,即低负荷条件下,各碳源系统仅有少量亚硝酸盐积累,比反硝化速率及出水pH值对应碳源依次为乙酸钠>乙醇>甲醇;高负荷条件下,除甲醇系统因反硝化不完全仅有微量亚硝酸盐积累外,乙醇和乙酸钠系统均有大量亚硝酸盐积累,且积累量与出水pH值明显高于低负荷.对以乙酸钠为碳源的研究还发现,不同电子受体投配比的反硝化均出现不同程度的亚硝酸盐积累且反应速率随着NO3--N比例提高而降低,说明亚硝酸盐的还原受到硝酸盐的抑制.pH值监测显示,除了与碳源类型及污泥负荷有关,反硝化过程pH值增量还随COD/N比升高.因此,反硝化过程宜采用乙酸钠与其他碳源混合且适量投加以消除单一碳源造成出水pH值过高或反应速率慢的不利影响.  相似文献   

17.
不同碳源材料用于污水厂尾水生物反硝化碳源的效果研究   总被引:6,自引:0,他引:6  
针对污水厂尾水氮素高度硝化的现状,通过正交试验研究了不同固体碳源在不同的反应时间、硝氮进水浓度、碳源比例及温度条件下的反硝化速率及对硝态氮的去除率.结果表明,以麦秆为碳源去除硝氮最优条件是温度为25℃,反应时间为10h,进水硝氮浓度为30 mg·L-1,麦秆与水的质量比为1:50;以PHAs为碳源去除硝氮的最优条件是温...  相似文献   

18.
温度对滴滤池硝化过程氧化亚氮释放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
王亚宜  陈玉  周东  林喜茂 《中国环境科学》2014,34(11):2796-2804
研究了某大学污水处理厂的一个滴滤池(生物膜系统)随季节变化N2O的释放特征.结果表明,滴滤池中N2O的释放浓度范围为0~18.21×10-6,释放量为20.5~554g N2O/(m3?a),其释放因子(N2O-N/进水NH3-N)为0.1%~0.8%.N2O释放量与季节变化有关,夏季产生量较高而春季较少,空气和进水的温差是影响滴滤池中硝化作用和N2O释放的主要因素,7月份时气温和水温温差较小,导致空气中的氧气无法充入水中,水中溶解氧的不足使得滴滤池硝化不完全,N2O释放量最高.另外,N2O释放量的昼夜变化规律表明,滴滤池的N2O释放、硝化作用和温度变化相关,通过在线监测N2O释放和水温/气温温度变化可以间接反映滴滤池的生物硝化效果.  相似文献   

19.
亚硝酸盐对外碳源反硝化过程N2O还原的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本试验通过批次试验考察了亚硝酸盐对外碳源反硝化过程N2O还原的影响.结果表明NO2--N初始浓度为5.92~35.23mg/L时,随着NO2--N浓度的增加,反硝化过程中N2O的积累量逐渐增加;当NO2--N浓度为35.23mg/L时,NO2--N还原量的46.26%被转化为N2O.通过对比试验得出,N2O还原酶与亚硝酸盐还原酶对电子的竞争和游离亚硝酸(FNA)对N2O还原酶的抑制会导致N2O比还原速率下降,造成反硝化过程N2O积累.基于上述试验结果提出,污水处理厂可通过调控运行条件控制NO2--N浓度,降低反硝化过程的N2O的产生与释放;也可以通过短程硝化提高NO2--N浓度,促进反硝化过程N2O的积累,再通过N2O氧化甲烷减少N2O排放,同时提高产能37%.  相似文献   

20.
Nitrous oxide (N2O) emission has been reported to be enhanced during denitrification when internally-stored compounds are used as carbon sources. However, negligible N2O emissions have been detected in the few studies where polyhydroxyalkanoates (PHA) were specifically used. This study investigated and compared the potential enhancement of N2O production, based on utilization of an internally-stored polymer and external carbon (acetate) by a denitrifying phosphorus removal culture. Results indicated that at relatively low chemical oxygen demand-to-nitrogen (COD/N) ratios, more nitrite was reduced to N2O in the presence of an external carbon source as compared to an internal carbon source (PHA). At relatively higher COD/N ratios, similar N2O reduction rates were obtained in all cases regardless of the type of carbon source available. N2O reduction rates were, however, generally higher in the presence of an internal carbon source. Results from the study imply that when the presence of an external carbon source is not sufficient to support denitrification, it is likely competitively utilized by different metabolic pathways of denitrifying polyphosphate accumulating organisms (DPAOs) and other ordinary denitrifiers. This study also reveals that the consumption of PHA is potentially the rate-limiting step for N2O reduction during denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号