首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 937 毫秒
1.
在"双碳"目标提出的背景下,电力行业作为首要的碳排放行业,将承担起更大的减排份额及减排责任.筛选了13种电力行业的关键减排技术,评估并比较了各减排技术在碳达峰年前后的减排潜力及减排成本的变化趋势,以每5年为1个时间节点,对边际碳减排成本曲线进行分析,最终从技术选择的角度确定电力行业情景年的最优减排成本方案.结果 表明:筛选的13种电力行业技术在2020,2025,2030,2035年的总碳减排潜力为4.7亿,7.0亿,5.0亿,5.4亿t,对应平均碳减排成本为8,67,242,464元/t.其中,2020年技术的边际减排成本为-295~376元/t.从技术类型而言,各项减排技术在边际减排成本曲线(MACC)上表现出特异性,相较于系统灵活性提升和技术升级改造,电源结构优化具有更高的碳减排潜力及更低的碳减排成本.研究为电力行业在选择最优减排技术方案时提供了成本角度的数据参考.  相似文献   

2.
为降低水泥行业碳减排成本,确定最优碳减排技术路径,研究基于经济-能源模型,核算中国水泥行业最新碳减排技术的边际减排成本,使用情景分析方法,研究了与未实施减排技术相比,2020年17项技术的碳减排潜力,并将其作为基准情景,和2025,2030,2035年3个未来情景的碳减排潜力作比较,从而得出不同情景下的边际减排成本曲线。结果表明:1)2020年我国水泥行业17项减排技术的平均减排成本为124元/tCO2,2020年实现总减排量3043万t,总减排成本为10.3亿元;在保持技术水平和排放水平不变的情况下,2035年17项减排技术可实现总减排量21307万t,总减排成本为103.4亿元。2)在各项减排技术中,集成模块化窑衬节能技术与水泥熟料烧成系统优化技术,具有较高减排潜力和较低减排成本,适合广泛推广;CO2捕集利用与封存(CCUS)技术虽具有较高减排成本,但是未来减排潜力较大,应给予重视。3)技术普及率与熟料产量是决定减排潜力的重要因素,因此未来水泥行业应注重节能减排政策技术推广与产业结构调整,可进一步实现减排目标。  相似文献   

3.
在"双碳"目标提出的背景下,电力行业作为首要的碳排放行业,将承担起更大的减排份额及减排责任.筛选了13种电力行业的关键减排技术,评估并比较了各减排技术在碳达峰年前后的减排潜力及减排成本的变化趋势,以每5年为1个时间节点,对边际碳减排成本曲线进行分析,最终从技术选择的角度确定电力行业情景年的最优减排成本方案.结果 表明:筛选的13种电力行业技术在2020,2025,2030,2035年的总碳减排潜力为4.7亿,7.0亿,5.0亿,5.4亿t,对应平均碳减排成本为8,67,242,464元/t.其中,2020年技术的边际减排成本为-295~376元/t.从技术类型而言,各项减排技术在边际减排成本曲线(MACC)上表现出特异性,相较于系统灵活性提升和技术升级改造,电源结构优化具有更高的碳减排潜力及更低的碳减排成本.研究为电力行业在选择最优减排技术方案时提供了成本角度的数据参考.  相似文献   

4.
钢铁行业是我国主要的能源消费及CO2排放行业,推动钢铁行业低碳绿色发展已成为实现我国碳达峰、碳中和的重要环节。为此,研究围绕能源结构调整、工艺结构优化、节能减排技术推广和CCUS技术应用4方面,通过设置基础情景、稳定发展情景和强化减排情景3类情景,利用边际减排成本曲线对我国钢铁行业34项减排技术的减排成本和减排潜力进行分析。结果表明:在稳定发展情景下,我国钢铁行业平均减排成本为433元/tCO2,所有技术的总减排成本为2100亿元,总减排潜力为4.9亿t。在各项减排技术中,废铁-电弧炉炼钢具有较高的减排经济效益,其以较低的单位减排成本贡献了钢铁行业近50%的碳减排量。未来,我国应加快推进长流程炼钢向短流程炼钢的发展,推动钢铁行业生产工艺的结构性调整。  相似文献   

5.
实现重点行业碳减排需要国家、地方乃至企业投入巨大成本,如何核算重点排放行业和领域资金规模以及选取最为经济有效的碳减排措施,是我国碳达峰路径需要考虑的关键因素. 采用自下而上的降碳技术综合成本评估模型,以我国六大行业(电力、钢铁、水泥、铝冶炼、炼油和石化、煤化工)和两大领域的59项降碳措施为对象,测算了2021—2035年投资成本并模拟了上述投资可能带来的潜在宏观经济影响. 结果表明:①2021—2035年全国重点行业/领域实现碳达峰累计投入成本为34.0×1012元,其中,2030年前碳达峰累计投入成本为20.8×1012元,年均投入2.1×1012元,约占全国年均GDP的1.5%. ②实现2030年前碳达峰预计需对电力行业、重点工业行业、交通领域和建筑领域分别投资10.7×1012、1.3×1012、5.2×1012、3.6×1012元. 铝冶炼行业单位减碳成本最低〔624元/t(以CO2计)〕,交通领域单位减碳成本最高〔47 869元/t(以CO2计)〕. ③碳达峰将通过促进新能源产业发展、重点工业行业节能、交通领域绿色升级和绿色基础设施建设等刺激经济高质量增长,2030年前碳达峰投资累计带动GDP增长约26.2×1012元,每年新增就业岗位约677×104个. 研究显示,工业是碳减排经济性最高的领域,交通领域实现碳减排需要付出较大的投资成本,碳达峰投资将有效促进产业绿色低碳转型.   相似文献   

6.
在评估2019年277个涉及粗钢生产的钢铁企业和17.6亿tCO2排放量的基础上,采用针对钢铁行业的全流程CCUS系统评价模型(ITEAM-CCUS模型)研究了粗钢生产结合碳捕集利用与封存技术(CCUS)的CO2减排潜力.评估设置了8种情景,初步回答了钢铁行业的粗钢生产通过规模化CCUS的减排规模、成本范围、封存场地、优先企业分布等关键问题.结果显示:粗钢企业开展全流程CCUS项目可以实现大规模的CO2减排.在早期示范机会情景,企业全流程CO2强化深部咸水开采(CO2-EWR)和CO2提高石油采收率技术(CO2-EOR)结合项目增加67~467元/t粗钢的单位成本(60%捕集率的平准化成本低于300元/t)可以年累计减排8.7亿t规模CO2,约占总捕集量的88%;单独EWR项目年累计驱替深部咸水10.5亿t.具有CCUS改造潜力的粗钢企业主要分布于渤海湾盆地、准噶尔盆地、江汉盆地与鄂尔多斯盆地.  相似文献   

7.
石化和化工行业是我国经济发展的支柱性产业,但同时也是高耗能、高排放行业。平衡石化和化工行业发展与碳达峰、碳中和之间的关系,制定科学、合理的减排措施,是实现石化和化工行业低碳绿色发展的重要措施。为此,研究围绕石化和化工重点行业,利用专家型和基于模型的边际成本曲线对我国石化和化工行业的关键减排技术及减排成本进行分析。研究结果显示,我国石化和化工行业平均减排成本为298元/tCO2,2035年累积碳减排量为4.4亿t,约占行业碳排放总量的30%。与节能减排措施相比,能源替代手段具有较高的减排成本,但也同时具有较高的减排潜力。2035年,能源替代的减排潜力占到总减排潜力的62%。未来,应着力推动传统煤化工行业能源利用向可再生、清洁能源的转变,助推石化和化工行业碳达峰、碳中和目标的实现。  相似文献   

8.
船舶是广东省二氧化碳(CO2)的重要排放来源,研究广东省船舶CO2排放的历史变化趋势、驱动因素和减排途径,可为广东省制定碳达峰与碳中和路径提供科学依据.采用排放因子法估算广东省船舶CO2排放量,利用对数平均指数法(LMDI)识别排放驱动因素,并结合情景分析法探究船舶CO2的减排途径.结果表明:(1)2006~2020年广东省船舶CO2排放量从331.94万t增加至639.29万t,其中干散货船和集装箱船是导致排放增加的主要船型.(2)2006~2020年广东省船舶CO2排放的关键正向驱动因素是运输强度(51%)和经济因素(49%),主要负向驱动因素是能源强度(93%)和货类结构(7%).(3)到2030年,如果广东省船舶运输保持当前政策(基准情景)发展,将无法实现碳达峰.(4)到2060年,同时考虑优化能源结构和降低能源强度(节能低碳情景),相比于基准情景有56.51%的CO2减排潜力.可为广东省制定船舶航运行业碳达峰与碳中和管控策略...  相似文献   

9.
实施建筑领域CO2排放控制是推动我国2030年前实现碳排放达峰的关键举措. 2020年我国建筑领域运行阶段CO2排放量为21.7×108 t,约占全国能源活动碳排放量的20%,其中直接排放6.9×108 t,间接排放14.8×108 t. 随着城镇化发展水平和居民生活消费水平的不断提升,建筑领域CO2排放仍呈刚性增长态势. 为明确建筑领域CO2排放达峰路径,综合考虑建筑领域发展现状和用能情况,以建筑运行中供暖、炊事等活动所需一次能源(煤炭、石油和天然气)消耗直接排放以及热电联产供暖、空调、照明、电梯、电器等外购热力和电力间接排放为核算范围,在预测不同阶段建筑发展规模、建筑能源消费、用能结构的基础上,分析未来碳排放变化趋势和达峰时间,提出达峰路径和重要政策举措. 结果表明:①2010—2020年,我国建筑领域CO2排放量从13.2×108 t增至21.7×108 t,其中直接排放已于2017年达峰,间接排放仍在持续增长. ②从建筑规模和节能降碳措施等角度分情景开展建筑领域碳排放达峰路径研究,预测建筑领域CO2排放将在2029—2030年左右达峰,峰值排放量为28.1×108~29.2×108 t,达峰后有2~3年的平台期. ③低碳清洁取暖、可再生能源应用、建筑节能改造和合理控制建筑规模4项措施是建筑领域实现碳排放达峰的重要举措,4项措施的减排贡献率分别达到40.7%、27.1%、17.7%和14.5%. 研究显示,2030年前,发展建筑可再生能源、强化建筑节能、合力控制建筑规模是建筑领域降碳的核心举措,而推动低碳清洁取暖是实现我国建筑领域降碳最主要的控制途径.   相似文献   

10.
工业碳减排绩效及其影响因素动态分解   总被引:1,自引:0,他引:1  
进入21 世纪以来,中国工业碳排放总量仍在波动中增长。为了考查近10 a 来中国工业碳减排绩效,并定量分析影响工业碳减排的主要因素对碳减排的贡献变化情况,论文通过构建中国工业碳排放数据库并运用“精确”的Laspeyres 分解方法,对中国2001-2010 年36 个工业行业CO2减排的影响因素进行了动态分解,研究结果表明:①虽然中国工业CO2排放总量在不断增加,但CO2排放增长率和工业碳排放强度双双降低,在考察周期内,CO2排放总量从2001 年 2.89×109 t 增长到2010 年7.16×109 t,工业碳排放量增长率则从2003 年最高值18.86%持续下降至2009 年的5.77%,工业整体碳排放强度由2001 年的29.14 t/104元下降到2010 年的18.12 t/104 元;②工业经济规模不断增加是工业CO2排放增加的主导因素,技术进步和结构调整则有效抑制了CO2的增加,10 a 间规模效应对CO2排放总量增加的贡献度年均达到191.81%,但是由于受到技术进步效应和结构调整效应的共同作用,10 a 来总效应值年均只有109.15%;③较之技术进步效应,结构调整效应对工业CO2减排的贡献度更大,结构调整效应累计促进碳减排达2.07× 109 t,而技术进步效应促进减排的总量只有1.14×109 t。论文认为,着力中长期减排政策的制定,以保证技术进步在碳减排中持续发挥作用,同时充分挖掘结构调整对减排作用潜力是中国实现工业碳减排的务实选择。  相似文献   

11.
基于重点行业/领域的我国碳排放达峰路径研究   总被引:1,自引:0,他引:1       下载免费PDF全文
开展碳排放达峰路径研究,明确时间表、路线图、施工图,是支撑我国实现2030年前碳达峰目标的基础性研究工作. 本文采取自上而下和自下而上相结合的方式,以满足社会经济高质量稳定发展需求和国家碳达峰碳中和双重目标为约束开展自上而下的宏观路径研究;以合计贡献了我国碳排放(不含港澳台地区数据) 90%以上的电力、钢铁、水泥、铝冶炼、石化化工、煤化工共6个重点行业以及建筑、交通2个重点领域为对象,开展自下而上的重点行业/领域碳达峰路径研究;通过上下路径反复迭代、行业间耦合优化,打通宏观路径与微观措施的联动和双向反馈,最终形成基于重点行业/领域的我国碳达峰路径. 结果表明:为实现国家碳达峰、碳中和的目标愿景,需抓紧部署、大力推进包括清洁能源降碳、能效提升降碳、资源循环降碳、管理调控降碳等4类关键举措,方可实现我国碳排放量在2030年前达峰的目标,峰值较2020年增加5.0×108~7.0×108 t左右,达峰后将保持3~4年的峰值平台期. 受需求与技术驱动,不同领域碳排放总量将梯次实现达峰,其中工业领域(含钢铁、水泥、铝冶炼、石化化工、煤化工共5个重点行业)预计将在“十四五”期间整体达峰,达峰后碳排放稳定下降;电力行业和交通、建筑领域碳排放均在2030年左右实现达峰. 经测算,2021—2030年间,为推动碳达峰采取的4类关键措施预计需投入2.08×1013元;其中清洁能源降碳是最为有效的措施,同时也是成本最高的措施. 为保障关键举措顺利落地,建议全面加大政策创新,逐步形成系统完善的碳总量控制与交易市场机制、绿色低碳标准体系、行业准入及产业结构政策体系、价格财税及投融资机制等. 本研究分行业及领域的碳达峰路径研究成果及所识别的关键控碳减碳技术手段、措施和政策将为国家碳达峰路径设计提供技术支撑.   相似文献   

12.
水泥行业是主要的CO2排放行业,2020年我国水泥行业CO2排放占全国排放总量的12%,占全国工业过程排放的60%以上. 为开展水泥行业碳达峰路径研究,提出了基于社会、经济等影响因素的多因素拟合分析模型以及基于主要下游产业的需求预测方法,对2021—2035年我国水泥熟料及水泥产量进行预测;并通过对水泥行业碳排放特征的分析,考虑主要控制措施的可行性,构建我国水泥行业CO2排放情景,对2021—2035年水泥行业CO2排放趋势进行测算,在此基础上分析水泥行业碳达峰路径及相关政策建议. 结果表明:①中国水泥熟料消费量在“十四五”期间仍有一定上升空间,随着经济社会的绿色转型,水泥市场需求在“十五五”时期下降. ②在此基础上,通过全面加强产能控制、加大落后产能淘汰力度、推广高效节能技术、积极推进原燃料替代,可推动水泥行业碳排放于“十四五”中期达峰,峰值为13.8×108~14.2×108 t,经过2~3年的峰值平台期后呈持续下降趋势,2030年水泥行业碳排放量将较2020年下降15%~18%. ③2030年,水泥熟料及水泥产量的下降将带动水泥行业碳排放量较2020年减少1.4×108 t. 在各项技术措施中,节能改造是CO2减排潜力最大的措施,2030年能效提升可带动水泥行业CO2排放量较2020年减少0.38×108 t;其次是利用固体废物替代燃煤,可带动行业CO2排放量较2020年减少0.17×108 t. 研究显示,推动我国水泥行业碳达峰及碳减排,需在加强产量控制避免水泥过度消费的基础上,聚焦节能改造和原燃料替代措施.   相似文献   

13.
中国钢铁行业二氧化碳排放达峰路径研究   总被引:2,自引:2,他引:0       下载免费PDF全文
钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.   相似文献   

14.
铝冶炼行业是高耗能、高排放行业,也是有色金属行业中CO2排放量最大的领域,在全国2030年碳达峰背景下,铝冶炼行业将面临巨大的减排压力. 统筹考虑社会经济发展、能源结构、工艺结构、技术进步、进出口影响等因素,采用回归分析和情景分析等方法,对2021—2035年我国铝冶炼行业碳排放趋势及影响因素进行分析,识别碳减排的主要驱动因素,提出推动碳达峰的关键举措,为制定碳达峰目标背景下的铝冶炼行业碳排放控制路径提供参考. 结果表明:①实现铝冶炼行业碳达峰任务艰巨,在严格落实电解铝产能总量控制以及多项措施实施的前提下,预计可实现铝冶炼行业“十四五”末期至“十五五”初期达峰,峰值在5.3×108~6.4×108 t之间,达峰后保持2年左右平台期,产能控制是削峰的关键. ②提高再生铝利用水平是决定铝冶炼行业能否快速达峰的关键,到2030年其对行业碳减排的贡献率为77.3%. ③推进清洁能源替代,鼓励电解铝产能向可再生电力富集地区转移是铝冶炼行业碳减排的重要手段,到2030年其对行业碳减排的贡献率为21.5%. ④提高短流程比例也是铝冶炼行业碳减排的重要方向,到2030年其对行业碳减排的贡献率为1.2%. 研究显示,铝冶炼行业碳减排工作重点聚焦于推进严控产能总量、调整优化产业结构、加强清洁能源替代、强化技术降碳等方面.   相似文献   

15.
粟月欢  张宇  段华波  李强峰 《环境工程》2022,40(5):184-192+236
地铁大规模建设和运营消耗了大量资源能源,已逐渐成为城市交通环境影响的主要贡献源。基于生命周期评价(life cycle assessment,LCA)方法,以深圳市为研究区域,定量分析了地铁建设过程的资源与能源消耗强度,选取全球变暖潜能值(global warming potential,GWP)为度量指标,构建了地铁建设碳排放分析框架及测算方法,并基于情景分析法预估了减排潜力。结果表明:截至2020年底,深圳已开通运营的地铁线站建设造成的碳排放量约累积达到2730万t CO2e,其中地铁车站建设碳排放量占比约为72%,地铁隧道建设碳排放量占比约为28%。建设阶段单位里程盾构隧道碳排放强度约为1.3万t CO2e/km,单位面积车站碳排放强度约为371 t CO2e/100 m2。通过推广绿色建造技术,如采用再生混凝土和再生钢材,地铁建设阶段最高碳减排率可达到8.5%/a,2021—2035年累积节碳可达到508万tCO2e,可一定程度上能缓解地铁建设的碳排放压力。  相似文献   

16.
中国电力行业二氧化碳排放达峰路径研究   总被引:1,自引:1,他引:0       下载免费PDF全文
电力行业是我国最大的碳排放部门,碳排放量占全国碳排放总量的40%以上;同时,电力将是未来10年能源增长的主体,而这些新增用电与国计民生直接相关,属于刚性需求,是支撑我国经济转型升级和未来居民生活水平提高的重要保障. 电力行业未来新增需求压力巨大,其碳排放峰值及达峰速度将直接决定2030年前全国碳排放达峰目标能否实现. 统筹考虑社会经济发展、各部门用电需求、电源结构调整、发电标准煤耗变化等因素,采用基于情景分析的方法,开展电力行业碳排放趋势预测,识别碳减排的主要驱动因素,提出推动碳排放达峰的关键举措,为制定碳达峰目标背景下的电力行业碳排放控制路径提供参考. 结果表明:①通过积极措施,电力行业碳排放能够在2030年左右达峰,在不考虑热电联产供热碳排放时,于2028—2031年达峰,峰值为43.2×108~44.9×108 t,较2020年增加3.2×108~4.9×108 t;考虑热电联产供热碳排放,则达峰时间为2031—2033年,峰值为50.7×108~53.0×108 t,较2020年增加4.9×108~7.2×108 t. ②在电源结构不变的情况下,如到2030年降低2%左右的电力需求,达峰时间将提前4年左右. ③提速风光新能源发展是实现2030年前碳达峰的必然选择,到2030年,提高风光发电、核电、水电、生物质、气电发电装机容量及发电量、节能降耗措施等各项措施的减排贡献率分别为55.3%、10.6%、9.2%、7.6%、5.7%、11.5%. 研究显示,未来我国电力行业碳减排工作重点要聚焦于优化电源结构、推动形成绿色生产生活方式、提升用电效率、降低煤电机组能耗水平等方面.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号