首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Because of the large amount of webbing they provide, social spider colonies often host other satellite spider species referred to as kleptoparasites or food stealers. Such kleptoparasites may take advantage of increased prey capture rates associated with large spider aggregations. This study investigated the relationship between a cooperatively social spider species, Anelosimus eximius (Araneae: Theridiidae), which lives in the undergrowth of tropical rainforests in Peru, and its kleptoparasite, Argyrodes ululans (Araneae: Theridiidae), which specializes in foraging in An. eximius webs. Although large aggregates of spiders may be more attractive to kleptoparasites, the benefits of group defense may offset this cost. Natural colonies were observed, and enclosed field colonies containing fixed numbers of host spiders were manipulated in order to determine whether kleptoparasite success is affected by the number of social spiders that are available for defense. Prey was less likely to be stolen by Ar. ululans when a greater number of host An. eximius spiders were involved in prey capture. When hosts detected a kleptoparasite earlier and chased it more often, prey was more likely to be successfully defended. Ar. ululans was more successful in stealing small prey items in all colonies and gave up more readily on very large prey (> 11 mm). I conclude that communal living and group defense in An. eximius confer protection from the kleptoparasite Ar. ululans.  相似文献   

2.
Summary Colonial orb-weaving spiders from Mexico were studied to test predictions of risksensitive foraging theory: 1. group foraging increases prey capture/individual, and reduces prey variance; 2. spiders should be expected to exhibit risk-averse behavior (forage in groups) when the average level of prey exceeds individual needs, and exhibit risk-prone behavior (forage solitarily) when prey are searce. Laboratory and field studies show that group foraging increases capture efficiency and reduces variability in prey captured per spider. In desert/mesquite grassland habitat, where prey availability is low, M. atascadero forage solitarily in most cases. In tropical rainforest/agriculture sites, M. increassata forage in large colonies of thousands of webs. In intermediate habitats, M. spinipes forages solitarily or in groups, depending on prey availability. Over a range of sites with varying levels of prey, M. spinipes shifts from a risk-prone to a risk-averse group foraging strategy as prey increases.Group foraging behavior observed in colonial Metepeira fits the predictions of risk-sensitive foraging models. These findings explain why spiders tend to group webs together only in areas of superabundant prey. The role of risk-sensitivity in the evolution of coloniality in spiders is discussed.  相似文献   

3.
Several species of kleptoparasitic and araneophagic spiders (Araneae: Family Theridiidae, Subfamily Argyrodinae) are found in colonial webs of the orb-weaving spider Metepeira incrassata (Araneae, Araneidae) from Mexico, where they steal food and/or prey upon their spider hosts. Census data from natural M. incrassata colonies reveal that the incidence of these species increases with colony size. This pattern may reflect the presence of several other orb-weaving spiders, each with their own kleptoparasitic species, invading larger M. incrassata colonies. As the number of these associated spiders increases, so does the density and number of Argyrodinae species in M. incrassata colonies, suggesting that associated spiders might reduce their own kleptoparasite load by building their webs within M. incrassata colonies. This represents a twofold cost to M. incrassata, as a field enclosure experiment revealed that a primarily kleptoparasitic species (Argyrodes elevatus) may reduce prey available to their hosts, but a kleptoparasitic/araneophagic species (Neospintharus concisus) inflicts high mortality upon M. incrassata. However, the cost of kleptoparasitism and predation by these species may be offset in part for M. incrassata individuals in large colonies by certain defensive mechanisms inherent in groups, i.e., “attack-abatement” and “selfish herd” effects. We conclude that increased occurrence of kleptoparasitic and/or predatory Argyrodinae spiders is a consequence of colonial web building and is an important potential cost of group living for colonial web-building spiders.  相似文献   

4.
Nearly all social spiders spin prey-capture webs, and many of the benefits proposed for sociality in spiders, such as cooperative prey capture and reduced silk costs, appear to depend on a mutually shared web. The social huntsman spider, Delena cancerides (Sparassidae), forms colonies under bark with no capture web, yet these spiders remain in tightly associated, long-lasting groups. To investigate how the absence of the web may or may not constrain social evolution in spiders, we observed D. cancerides colonies in the field and laboratory for possible cooperative defense and foraging benefits. We observed spiders’ responses to three types of potential predators and to prey that were introduced into retreats. We recorded all natural prey capture over 447 h both inside and outside the retreats of field colonies. The colony’s sole adult female was the primary defender of the colony and captured most prey introduced into the retreat. She shared prey with younger juveniles about half the time but never with older subadults. Spiders of all ages individually captured and consumed the vast majority of prey outside the retreat. Young spiders benefited directly from maternal defense and prey sharing in the retreat. However, active cooperation was rare, and older spiders gained no foraging benefit by remaining in their natal colony. D. cancerides does not share many of the benefits of group living described in other web-building social spiders. We discuss other reasons why this species has evolved group living.  相似文献   

5.
The nocturnal orb-web spider Larinioides sclopetarius lives near water and frequently builds webs on bridges. In Vienna, Austria, this species is particularly abundant along the artificially lit handrails of a footbridge. Fewer individuals placed their webs on structurally identical but unlit handrails of the same footbridge. A census of the potential prey available to the spiders and the actual prey captured in the webs revealed that insect activity was significantly greater and consequently webs captured significantly more prey in the lit habitat compared to the unlit habitat. A laboratory experiment showed that adult female spiders actively choose artificially lit sites for web construction. Furthermore, this behaviour appears to be genetically predetermined rather than learned, as laboratory-reared individuals which had previously never foraged in artificial light exhibited the same preference. This orb-web spider seems to have evolved a foraging behaviour that exploits the attraction of insects to artificial lights. Received: 8 June 1998 / Received in revised form: 18 January 1999 / Accepted: 19 January 1999  相似文献   

6.
Summary.  Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycuscommonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. David Utterback: Deceased  相似文献   

7.
Summary The webs of Miagrammopes animotus have a simple structure and variable form. However, both the length of their lines and the total surface area of their capture threads are closely associated with spider size. These spiders' ability to deposit both linear and looped cribellar capture threads along a web's diverging capture lines plays an important role in establishing these relationships. Looped capture threads have the greater surface area and are more prominent in the webs of older spiders where they increase a web's surface area and enhance its ability to retain prey. The predicted performance of these webs is supported by comparisons of the stickiness of their threads and a survey of the prey their owners capture. Cribellar thread stickiness increases with spider size, and larger spiders capture prey that have greater masses.  相似文献   

8.
Orb web spiders of the genus Argiope are permanently located at the hub of the orb web and are thus vulnerable to changing environmental conditions. Severe damage to the web by non-prey animals can have a significant impact on survival, through the cost of producing expensive silk and the loss of foraging opportunities. Thus, selection should favor web protection mechanisms, and the conspicuous web decorations, typical of Argiope spiders, may play a role. Decorated webs suffer less damage than undecorated webs, consistent with the view that they advertise the presence of the web to non-prey animals that may damage the web. However, whether spiders respond to web damage by increasing investment in web decorations has not been investigated. We subjected adult St. Andrew's Cross spider (Argiope keyserlingi) females to three levels of web damage and recorded their subsequent web-decorating behavior. Mild damage, similar to that caused by impacting prey, did not affect either web building or decorating behavior. However, spiders subjected to substantial web damage both reduced the size of subsequent webs and increased investment in web decoration size. These data are consistent with an advertising role of web decorations.  相似文献   

9.
Although rewarded bees learn and remember colors and patterns, they have difficulty in learning to avoid negative stimuli such as decorated spider webs spun by Argiope argentata. A. argentata decorates its web with silk patterns that vary unpredictably (Fig. 1) and thus foraging insects that return to sites where spiders are found encounter new visual cues daily. Stingless bees can learn to avoid spider webs but avoidance-learning is slowed or inhibited by daily variation in web decorations (Figs. 3,4; Tables 1,2). In addition, even if bees learn to avoid decorated webs found in one location, they are unable to generalize learned-avoidance responses to similarly decorated webs found at other sites. A. argentata seems to have evolved a foraging behavior that is tied to the ways insects perceive and process information about their environment. Because of the evolutionary importance of bee-flower interdependence, the predatory behavior of web-decorating spiders may be difficult for natural selection to act against.  相似文献   

10.
Fishing pots (i.e., traps) are designed to catch fish or crustaceans and are used globally. Lost pots are a concern for a variety of fisheries, and there are reports that 10 – 70% of deployed pots are lost annually. Derelict fishing pots can be a source of mortality for target and bycatch species for several years. Because continual removal of derelict gear can be impractical over large spatial extents, modifications are needed to disarm gear once it is lost. We tested a fully biodegradable panel with a cull or escape ring designed for placement on the sides of a crab pot that completely degrades into environmentally neutral constituents after approximately 1 year. This panel is relatively inexpensive, easy to install, and can be used in multiple fisheries. We used the blue crab (Callinectes sapidus) fishery as a test case because it is a large pot fishery and blue crab pots are similar to traps used in other pot fisheries. We had commercial fishers deploy pots with panels alongside standard pots in Chesapeake Bay (U.S.A.) to assess potential effects of our experimental pots on blue crab catch. We compared the number, biomass, and size of crabs captured between standard and experimental pots and evaluated differences in catch over a crabbing season (March–November) at five locations. There was no evidence that biodegradable panels adversely affected catch. In all locations and time periods, legal catches were comparable in abundance, biomass, and size between experimental and standard pots. Properly designed biodegradable panels appear to be a viable solution to mitigate adverse effects of derelict pots. Uso de Paneles Completamente Biodegradables para Reducir las Amenazas de Vasijas Abandonadas para la Fauna Marina  相似文献   

11.
Light traps were deployed in two sampling programs. In the first, small and large traps were released to drift with the current at stations along a cross-shelf transect on the NW Shelf off the coast of Western Australia. In the second program, pairs of small and large traps were deployed on moorings 150 m off the coastline. The composition and size-frequency distributions of catches of fishes in small and large traps were similar for both modes of deployment. In drifting traps, nearly 78% of this catch was composed of reef fishes, and these were collected in significantly greater numbers by the small design than by large traps (9.51 vs. 5.84 individuals h-1, respectively). Nine taxa (amphipods, mysids, crab megalopae, copepods, cumaceans, isopods, caridean shrimps, polychaetes and the euphausiid, Pseudeuphausia latifrons) accounted for 99% of the total catch of invertebrates by drifting traps. Of these, catches of amphipods, copepods, cumaceans and P. latifrons were greater in large traps than in small traps (3,134 vs. 1,687 h-1, 1,018 vs. 214 h-1, 551 vs. 165 h-1 and 74 vs. 9 individuals h-1, respectively). In contrast, crab megalopae were more abundant in catches by small traps than by large traps (3,134 vs. 1,687 individuals h-1, respectively). The catch rate of fishes in moored traps was higher than in drifting traps (105 vs. 20 fishes h-1) and was dominated by baitfishes (86% of total catch). Reef fishes were also captured in greater numbers by small traps than by the large design (10.17 vs. 4.4 individuals h-1) in this mode of deployment. Despite these differences in catch rates, multivariate analysis showed that cross-shelf patterns in catches of fishes and invertebrates were mapped equally well by both trap designs. Variation in the efficiency of trap designs thus appears to be small when compared to changes in the composition and abundance of zooplankton assemblages that occur at scales of tens of kilometers.  相似文献   

12.
The echolocation calls used by Nyctalus leisleri during search phase in open air space are between 9 and 14 ms long, with the peak energy between 24 and 28 kHz. The pulses are shallowly frequency-modulated with or without an initial steep frequency-modulated component. The diet consists primarily of small flies (Diptera), including many chironomids (wingspan 9–12 mm) and yellow dung flies (Scatophaga; wingspan 24 mm), but also of some larger insects such as dung beetles (Coleoptera; Scarabaeoidea), caddis-flies (Trichoptera) and moths (Lepidoptera). The echo target strength of some prey items was measured. Contrary to models based on standard targets such as spheres or disks, the echo strength of real insects was found to be virtually independent of the emitted frequency within the 20–100 kHz frequency range. A model was used to calculate probable detection distances of the prey by the bat. Using narrow-band calls of 13.7 ± 2.7 ms duration, a bat would detect the two smallest size classes of insect at greatest range using calls of 20 kHz. The results may therefore explain why many species of large and medium sized aerial-hawking bats use low-frequency calls and still eat mostly relatively small insects. The data and model challenges the assumption that small prey are unavailable to bats using low-frequency calls.  相似文献   

13.
Summary Perhaps the most important factor affecting predator-prey interactions is their encounter probability. Predators must either locate sites where prey are active or attract prey to them, and prey must be able to recognize potential predators and flee before capture. In this study we manipulate and describe three components of the foraging system of predatory, web-weaving spiders, the presence of viscid droplets, silk brightness (achromatic surface reflectance), and visibility of the orb pattern, to determine their effect on insect attraction, recognition, and web avoidance. We found that webs with viscid droplets were more visible to prey at close range, but at greater distances the sparkling droplets lured insects to the web area and hence increased insect capture probability. Although the size of viscid droplets and silk brightness are closely correlated (Table 2, Fig. 3), the relationships among droplet size, spider size, and the visual environments in which webs are found are more complicated (Fig. 2, Tables 2, 3). In environments with predictable light exposure, droplet size and hence silk visibility correlate with spider size, and spiders that forage at night produce relatively more visible silks then spiders that forage during the day (Table 3, Fig. 4). In habitats in which light levels are not predictable, silk surface reflectance and spider size are not closely correlated, suggesting that the complexity of the light environment, as well as the visual and foraging behaviors of insects found there, has played an important role in the evolution of spider-insect interactions.Offprint requests to: C.L. Craig  相似文献   

14.
Many orb-weaving spiders decorate their webs with conspicuous ultraviolet (UV)-reflective stabilimenta. The prey-attraction hypothesis suggests that stabilimenta are visually attractive to prey and thus may increase the spiders’ foraging success. However, previous studies on the function of stabilimenta have produced conflicting results in Argiope species. Using a combination of field and laboratory studies, we examined whether the linear stabilimentum of Argiope bruennichi contributes to prey interception. We recorded prey interceptions in 53 webs with stabilimenta and 37 equally-sized webs without stabilimenta, classifying captured prey according to their taxonomical group and size. On average, 6.2?±?4.7 prey items were intercepted in webs with stabilimenta, while 3.2?±?2.9 items were intercepted in webs without stabilimenta. The effects of stabilimenta on foraging success appear to be due to increased interception of UV-sensitive insect pollinators, including 20 families of Diptera, Hymenoptera, Coleoptera, and Lepidoptera. The mean number of UV-sensitive prey was 4.4?±?3.6 in webs with stabilimenta compared with 1.8?±?2.1 in webs without stabilimenta. Webs with and without stabilimenta did not differ in the mean number of UV-nonsensitive prey captured. The linear stabilimentum showed strong positive effects on the interception of large prey: webs with stabilimenta captured more than twice as many large prey (≥5?mm) than webs without stabilimenta, whereas there was only a slight difference in the interception rates for small prey (<5?mm). Comparisons among different Argiope species suggest that the stabilimentum may have different adaptive functions in different species or ecological contexts.  相似文献   

15.
Summary Colonial web-building spiders respond to trade-offs between selective forces relative to spatial position within colonies and thus provide support for the selfish herd theory. The size distribution of spiders within colonies of Metepeira incrassata, a colonial orb-weaver (Araneae: Araneidae) from tropical Mexico is nonrandom; larger (mature) spiders and females guarding eggsacs are more prevalent in the center, whereas more small (immature) spiders are found on the periphery. Experimental field studies with spiders of selected size classes show that larger spiders actively and aggressively seek protected positions in the center of the colony webbing, even though prey availability and capture rates are significantly higher on the periphery. Attacks by predatory wasps, other spiders, and hummingbirds are more frequent on the periphery than in the core of the colony. Reproductive females on the periphery are at greater risk because they are captured more often than smaller spiders, and if their egg sacs consequently remain unguarded, chances of cocoon parasitism are increased. As a result, spiders in the core of the colony have greater reproductive success, producing more egg sacs with greater hatching frequency. Colonial spiders thus appear to be making a trade-off between foraging and protection from predation and show a spatial organization predicted by the selfish herd theory. The influence of such trade-offs on individual fitness and the structure of colonies is discussed. Offprint requests to: G.W. Uetz  相似文献   

16.
Summary Hipposideros ruber use CF/FM echolocation calls to detect the wing flutter of their insect prey. Fluttering prey were detected whether the insects were flying or sitting on a surface, and prey in either situation were captured with equal success (approximately 40% of capture attempts). Stationary prey were ignored. The bats did not use visual cues or the sounds of wing flutter to locate their prey. Wing flutter detection suggests that H. ruber exploit the Doppler-shifted information in echoes of their echolocation calls. These bats fed primarily upon moths, usually those of between 10 and 25 mm wingchord, although moths of less than 5 mm and greater than 40 mm wingchord were also attacked and captured. They showed no evidence of selecting moths on the basis of species or other taxonomic distinction, and occasionaly captured other insects.  相似文献   

17.
We present a hitherto unknown prey perception strategy in bats: Myotis nattereri (Vespertilionidae, Chiroptera) is able to perceive prey by echolocation within a few centimeters of echo-cluttering vegetation, by using frequency-modulated search signals of very large bandwidth (up to 135 kHz). We describe the species’ search behavior and echolocation repertoire from the field and from experiments in a flight tent. In the field, bats varied signal parameters in relation to their distance from vegetation and usually flew close to vegetation. In the flight tent, M. nattereri detected and localized prey by echolocation alone as close as 5 cm from vegetation. Apparently, the bats were able to tolerate some overlap between prey and clutter echoes. Passive prey cues (vision, olfaction, prey-generated sounds) were not used in prey perception. The bats selected prey by size. The animals performed aerial catches and produced approach sequences typical for aerial hawking bats, but were able to do so within a few centimeters of the substrate. M. nattereri thus has access to silent, suspended prey very close to vegetation (e.g., spiders, and caterpillars on threads). Received: 29 September 1999 / Received in revised form: 12 February 2000 / Accepted: 12 February 2000  相似文献   

18.
The grand skink, Oligosoma grande, is a diurnal rock-dwelling lizard from the tussock grasslands of Central Otago, New Zealand, whose diet includes a variety of arthropods and fruit. We conducted a field experiment to examine the influence of prey distribution on foraging behavior and spacing patterns. On sites where prey distribution was unaltered (control sites), males and females differed in diet and foraging behavior. Most male feeding attempts were directed at large strong-flying insects, and males used a saltatory search pattern that involved relatively infrequent moves of long duration. Females spent more effort catching small weak-flying insects and visiting fruiting plants. Their search behavior involved frequent moves of short duration. The placement of meat-bait on experimental sites led to a redistribution of large flies without influencing other prey types. Experimental females switched foraging strategy by adopting a search pattern of relatively infrequent moves of long duration, increasing the frequency of attempts to capture large prey, and reducing the importance of fruit in their diet. The experimental manipulation appeared to influence space use. On control sites, both sexes had comparably sized home ranges. On experimental sites, male home ranges were significantly larger than female home ranges. Received: 3 November 1997 / Accepted after revision: 13 December 1998  相似文献   

19.
Secondary sexual characters are assumed to be costly to produce or maintain. A test of this assumption was performed using the sexually exaggerated outermost tail feathers of male barn swallows Hirundo rustica, a trait currently subject of a directional female mate preference. A possible cost of sexual signalling in male barn swallows arises from increased flight cost during foraging in this aerially insectivorous species. A longer tail may impose a greater drag during flight and thereby affect foraging ability. This was tested by determining the relationship between experimentally modified male tail lengths and number and size of prey delivered to offspring in Spain, where sexual size dimorphism in tail length is small, compared to Denmark, where dimorphism is large. Food boluses contained significantly fewer small insects in Spain than in Denmark. Males with elongated tails captured more and smaller insects while males with shortened tails captured fewer and larger prey items at both sites. Males with naturally long tails were less affected by experimental treatment in terms of effects on the number and the size of prey delivered to their offspring, a finding consistent with a long tail being a condition-dependent viability indicator. The effect of a given degree of tail manipulation on prey size and number of prey per bolus was larger in Spain than in Denmark. These results demonstrate that (1) tail length in male barn swallows affects foraging, and (2) larger sexual size dimorphism occurs where the foraging cost of an increment in ornament size is smallest.Communicated by M. Zuk  相似文献   

20.
Summary Seothyra henscheli (Eresidae) is a burrowing spider that lives in the dune sea of the southern Namib Desert, Namibia. Prey capture by these spiders involves a foray from a cool subterranean retreat to the undersurface of a capture web that can be lethally hot. Striking, disentangling and retrieving prey from the capture web typically involves several short trips to the capture web, alternating with retreats to the cool burrow. It has been suggested that this behavior limits the increase of body temperature a spider must experience while working at the hot capture web. We used biophysical models in conjunction with direct observations of prey-capture behavior and distributions of sand temperature to estimate body temperatures experienced by S. henscheli during prey capture. In the circumstances we observed, only the relatively long post-strike retreat from the capture web is important in keeping spiders' body temperatures from exceeding their lethal limits. After the post-strike retreat, shuttling appreciably limits the increase in body temperature of small individuals, but may have little effect on body temperature increase in larger spiders. Correspondence to: J.S. Turner at the present address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号