共查询到13条相似文献,搜索用时 62 毫秒
1.
微波辐照载甲苯活性炭再生研究 总被引:4,自引:0,他引:4
研究在微波辐照条件下,活性炭量、微波功率、载气量、加热时间等因素对载甲苯活性炭脱附的影响,在正交实验中,各个影响因素的重要性排序为:氮气流量、活性炭量、辐照时间、微波功率,最佳的操作工况为:活性炭量9 g、载气流量300 mL/min、辐照时间120 s、微波功率500W,活性炭的脱附率在99.74%. 相似文献
2.
3.
4.
提出用微波加热一二氧化碳活化法再生乙酸乙烯合成用触媒载体废活性炭工艺。采用条件实验法研究了活化时间、二氧化碳流量和微波功率对活性炭碘吸附值,亚甲基蓝吸附值和再生得率的影响,得到微波辐射加热二氧化碳活化再生乙酸乙烯用触媒载体废活性炭的最佳工艺条件为活化时间25min,二氧化碳流量0.2L/min,微波功率700w。在此条件下制得的活性炭碘吸附值为1158.02mg/g、亚甲基蓝吸附值为240mv,/g、得率为74.19%。并对活性炭进行了比表面积的测定和孔结构的分析,活性炭的比表面积为1308.13m^2/g,总孔容为0.76mL/g。 相似文献
5.
微波再生载苯酚活性炭过程中再生产物分析 总被引:1,自引:0,他引:1
研究了载氮气和无载气2种条件下,微波再生载苯酚活性炭过程中再生产物的成分和苯酚随再生过程的去向分布。结果表明,无载气时,微波功率越高,再生反应器内温度越高,吸附质的高温裂解反应越彻底,再生产物以挥发性气体为主,有机质种类很少;而当微波功率较低或载氮气再生时,反应器内温度相对较低,苯酚难以被彻底分解,再生产物中含多种复杂的链状或环状有机物。此外,载氮气时,经气提、挥发而去除的苯酚量约占总吸附量的一半,再生炭上无苯酚残留,活性炭吸附性能可完全恢复乃至优化;无载气时,经挥发而去除的苯酚量只有19.9%,其余大量苯酚则在微波作用下裂解或缩合为其他物质随尾气而去除,且再生炭上仍有少量苯酚未被解吸出来。因此,前者活性炭再生的效果优于后者。 相似文献
6.
提出用微波加热-二氧化碳活化法再生乙酸乙烯合成用触媒载体废活性炭工艺.采用条件实验法研究了活化时间、二氧化碳流量和微波功率对活性炭碘吸附值,亚甲基蓝吸附值和再生得率的影响,得到微波辐射加热二氧化碳活化再生乙酸乙烯用触媒载体废活性炭的最佳工艺条件为活化时间25 min,二氧化碳流量0.2 L/min,微波功率700 W.在此条件下制得的活性炭碘吸附值为1158.02 mg/g、亚甲基蓝吸附值为240 mg/g、得率为74.19%.并对活性炭进行了比表面积的测定和孔结构的分析,活性炭的比表面积为1308.13 m2/g,总孔容为0.76 mL/g. 相似文献
7.
8.
为提高烟气脱硝效率,构建了微波辐照活性炭还原氮氧化物体系,通过对微波功率(温度)、反应空速、NO浓度、活性炭种类及粒径等影响因素的考察,研究了微波辐照活性炭还原NO体系的性能,通过反应动力学实验确定了活性炭还原NO反应的速率方程。研究结果表明,增大微波功率、减小反应空速均会提高NO还原效率,而改变NO浓度、活性炭种类以及粒径对NO还原效率无明显影响,微波功率为800 W,反应空速为2 000 h-1时,对2 412 mg·m-3的NO去除率可达99.8%,当NO浓度增至29 000 mg·m-3时NO还原效率仍高达98.2%。通过反应动力学研究确定了反应的速率方程,其中反应级数为0.568 3,反应速率常数为14.71 s-1。 相似文献
9.
海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙 总被引:1,自引:0,他引:1
采用海绵铁(s-Fe0)还原耦合活性炭(GAC)吸附-微波(MW)再生技术降解甲基橙(MO)溶液,重点考察了s-Fe0投加量、粒径、微波功率等因素对MO去除效果的影响。结果表明,s-Fe0投加剂量为15.0 g/L、粒径为3~5 mm、超声波功率为200 W,反应1 h,MO的去除率为94.2%。其次,采用GAC吸附-MW再生技术(800 W,照射1 min)循环处理上述脱色后的MO废水。结果表明,GAC吸附可有效降低废水的生物毒性及残留的染料、TOC和总铁离子浓度,且MW辐射可有效再生吸附饱和的GAC颗粒。因此,s-Fe0还原耦合GAC吸附-MW再生技术可以有效降解MO染料,具有处理效果好、实现资源循环利用等优点。 相似文献
10.
微波紫外耦合辐射降解间硝基苯磺酸钠及活性炭再生 总被引:1,自引:0,他引:1
针对活性炭吸附法处理污水所面临的吸附剂物耗大及其所形成的危险废弃物处置难题,采用微波紫外耦合辐射技术对活性炭无害化再生。以活性炭吸附电镀废水中的间硝基苯磺酸钠(3-NBSA)为研究对象,考察了pH对活性炭吸附3-NBSA效果的影响,研究了活性炭的吸附动力学和吸附等温线,最后探讨了微波功率、微波辐照时间、空气流量及再生次数对活性炭再生效果和再生损耗率的影响。实验结果表明,pH在2~8范围内对活性炭吸附效果影响不大,活性炭吸附动力学符合准二级动力学模型,等温吸附特性可用Freundlich等温方程式来描述。活性炭再生实验的最佳工艺条件:微波功率为500 W,微波辐照时间为10 min,空气流量为0.024 m3 /h。最佳工艺条件下活性炭的再生率达到99.62%,且连续再生5次后仍能达到90.02%。实验表明,在微波紫外耦合辐射作用下比只在微波作用下,活性炭的再生效果和3-NBSA的降解效果更好。 相似文献
11.
微波法制备污泥活性炭研究 总被引:4,自引:0,他引:4
采用微波加热法,以污水厂剩余污泥为原料,磷酸为污泥活化剂制备污泥活性炭.微波功率、辐照时间和磷酸浓度对污泥活性炭吸附性能具有显著影响,在最佳工艺条件微波功率480 W、辐照时间315 s和磷酸浓度40%条件下制得的活性炭碘值301 mg/g,比表面积168 m2/g,污泥中重金属绝大部分被固化.与传统商品炭相比,污泥炭孔隙结构以中孔为主.利用该活性炭处理城市生活污水处理厂出水,COD去除率可达87%以上,污泥炭的吸附等温线用Langmuir等温吸附模型进行描述. 相似文献
12.
微波活性炭法处理酸性红88废水及其机理 总被引:1,自引:0,他引:1
微波活性炭法(MW-GAC)处理模拟酸性红88(AR88)废水的实验结果显示,酸性红88的脱色率与固液比、微波辐照时间、微波功率正相关,而与其初始浓度(在10~100 mg·L-1范围内)负相关。溶液pH对脱色率的影响不大,pH为3时脱色率最高为99.7%。在MW-GAC处理过程中,微波和活性炭具有较强的协同作用,酸性红88经处理后,特征波长(UV506、UV310、UV254)吸收均锐减。活性炭表面检测到残留芳环、N-H和C-N,结合中间产物质谱检测结果,推断酸性红88在MW-GAC系统中的降解途径首先是偶氮键被破坏,然后形成芳庚和甲苯,随后开环并加成形成2,4-二甲基-1-庚烯,最后矿化形成CO2和H2O。 相似文献