首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As savannas are widespread across northern Australia and provide northern rangelands, the sustainable use of this landscape is crucial. Both fire and grazing are known to influence the tree-grass character of tropical savannas. Frequent fires open up the tree layer and change the ground layer from perennials to that dominated by annuals. Annual species in turn produce copious quantities of highly flammable fuel that perpetuates frequent, hot fires. Grazing reduces fuel loads because livestock consumes fuel-forage. This trade-off between fire and grazing was modelled using a spatially explicit, process-orientated model (SAVANNA) and field data from fire experiments performed in the Victoria River District of northern Australia. Results of simulating fire (over 40 years) with minimal or no grazing pressure revealed a reduction in the shrub and woody plants, a reduction in grasses, and no influence on the tree structure given mild fires. While mature trees were resistant to fire, immature trees, which are more likely associated with the shrub layer, were removed by fire. The overall tree density may be reduced with continual burning over longer time periods because of increasing susceptibility of old trees to fire and the lack of recruitment. Increases in stocking rates created additional forage demands until the majority of the fuel load was consumed, thus effectively suppressing fire and reverting to the grazing and suppressed fire scenario where trees and shrubs established.  相似文献   

2.
The present study was undertaken in Pinus roxburghii forest along three different altitudes i.e., 1100, 1300 and 1500 meter above mean sea level of Garhwal Himalaya to understand the effect of altitudes on carbon stocks (live trees and soil) in Pinus roxburghii forest. Tree density of this forest ranged between 590 tree ha?1 (upper altitude) to 640 tree ha?1 (lower altitude). The highest total carbon density (TCD) of above and belowground carbon was 66.33 ± 29.92 Mg ha?1 at lower altitude followed by 57.64 ± 16.75 Mg ha?1 in middle altitude and 52.92 ± 6.52 Mg ha?1 in upper altitude. Soil organic carbon was highest (33.20 ± 2.77 Mg ha?1) at lower altitude followed by middle (22.61 ± 7.17 Mg ha?1) and upper altitude (12.65 ± 6.10 Mg ha?1). Total carbon stock (trees + soil) of Pinus roxburghii forest was maximum (99.53 Mg ha?1) at lower altitude and minimum (65.57 Mg ha?1) at upper altitude.  相似文献   

3.
Eastern Mediterranean silvopastoral oak woodlands have been greatly damaged through forest conversion, illegal lumbering, overgrazing, and forest fires. The aim of this study was to assess land-use changes and the legacies that they have imprinted on the forest structure of Quercus macrolepis and accompanying Quercus pubescens and Quercus cerris woodlands on Lesvos Island, Greece. The size structures of adult oak populations were analyzed as indicators of long-term oak regeneration, while short-term recruitment was determined by counting oak seedlings and saplings. The size structure of the adult Q. macrolepis population was similar to the inverse J-shaped distribution typical for natural Mediterranean oak forests, indicating continuous recruitment with a constant mortality rate of mature individuals. Seedling and sapling densities were highly variable, but generally low in relation to adult oak densities. Recruitment of oak seedlings and saplings was positively related to determinants such as forest cover, adult oak density and basal area, woody plant richness, and litter cover. Both seedling and sapling occurrence were negatively associated with dung frequency, which suggests that sheep grazing imposes a barrier to oak recruitment. The study outlines a comprehensive land-use transition from the 1950 to 1970s, during which a complex and multifunctional agrosilvopastoral land-use system was simplified to an intensive grazing system. The discrepancy between the successful long-term regeneration and the less successful short-term recruitment of oaks illustrates that intensified livestock grazing has been a major driver of vegetation change. Grazing impact is likely to interact with increasing drought conditions, which may trigger a negative feedback cycle that undermines the capacity of woodlands to sustain ecosystem services.  相似文献   

4.
Increasing rates of deforestation in tropical forests have been linked to agriculturalists. A critical concern generating debate is how well communities of trees recover into a more species rich ecosystem after restoration planting. The aim of the study was to evaluate the pattern of recovery of communities of tree, assess the influence of Acanthus pubescens, Lantana camara and Pennisetum purpureum, on the recovery as well as how restoration planting facilitates recruitment of other native tree seedlings along a gradient of forest restoration in Kibale National Park, Uganda after evictions of illegal settlers. We studied six restoration forests ranging in age from 3 to 16 years, naturally regenerating and three primary forests. Our results showed that recovery with natural regeneration was more effective than restoration planting although the latter enhanced recruitment of other native tree seedling. Tree recovery was generally correlated with age so that species density and diversity increased although at different rates. A reverse pattern was found for dominance but no clear pattern was found for tree density (individual/ha). Communities of tree showed directional patterns of change however community composition were still distinct among the different forests. A. pubescens, L. camara and P. purpureum negatively correlated with species density, tree density and diversity but a positive correlation was found for dominance. Restoration planting can reestablish forests with high species density, tree density and diversity, but this is dependent on age and the extent of the herbs, grasses and shrubs cover in tropical forests.  相似文献   

5.
以三峡库区为研究地点,建立库区优势树种立木生物量模型,并测定乔木含碳系数,结合库区第7次和第8次森林资源连续清查数据,估算了整个三峡库区乔木林的生物量和碳储量。研究结果表明:(1)整个库区乔木林生物量和碳储量第7次调查为12 583×104t和6 471×104t,单位面积生物量75.70t/hm2,碳密度38.93t/hm2,第8次调查为14 253×104t和7 396×104t,单位面积生物量77.46t/hm2,碳密度40.20t/hm2。可见,这5a中,三峡库区生物量和碳储量都有所增加。(2)对于不同森林植被类型来说,松类的生物量和碳储量都显著高于其他类型,分别占三峡库区生物量和碳储量的40%和50%。(3)三峡库区森林植被生物量和碳储量随龄级增大先增大后减少,在中龄林时达到最大,比较两次调查的生物量和碳储量,森林植被主要以幼林龄和中龄林占优。(4)两次调查显示三峡库区森林植被生物量和碳储量主要分布在天然林中,对于碳汇起到主要作用,同时,人工林所占的比例有所提高,其碳汇能力也逐步提高。  相似文献   

6.
In Central Africa, important carbon stocks are stored in natural forest stands, while activities that modify the carbon storage occur in the forest landscape. Besides clean development mechanisms, the reduction of emission through deforestation and degradation (REDD) initiative is viewed as one way to mitigate climate change. Important forest habitat protection activities have already been implemented with the aim of conserving the biodiversity of the region in a sustainable manner. The main causes of land use changes in the region are small holder subsistence practices and logging activities. Agricultural production has low productivity levels and therefore investments in improved agricultural techniques can both reduce pressure on existing forests and perhaps allow for the reforestation of existing degraded lands. The logging industry is dominated by large, industrial scale, logging operations performing selective logging of specific species and large trees. The adoption of improved forest management practices can reduce the impact of such logging on the ecological integrity and carbon stocks. Some efforts to engage in the carbon market have begun in the region. Further research is needed into the types of projects that will most likely become successful in the region and what locations will offer the greatest benefits.  相似文献   

7.
长江中上游防护林体系森林植被碳贮量及固碳潜力估算   总被引:6,自引:0,他引:6  
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

8.
三峡库区主要森林植被类型土壤有机碳贮量研究   总被引:7,自引:0,他引:7  
根据全国森林资源清查资料,按主要优势树种和分布面积将三峡库区主要森林植被划分为马尾松针叶林、栎类混交林、灌木林等11种主要森林植被类型。基于196个土壤剖面数据,分析了11种主要森林植被类型下土壤有机碳含量、碳密度大小和分配特征。研究发现,三峡库区主要森林植被类型下土壤有机碳含量和碳密度均存在较大差异,二者总体上都随土层加深而降低。11种主要森林植被类型中以杉木针叶林土壤有机碳密度最大,达16.0 kg/m2,温性松林下土壤碳密度最小,仅为7.9 kg/m2。不同植被类型下土壤有机碳贮量在土层中的分配比例也不同,以灌木林和柏木林土壤碳贮量在土层间的差异最大。11种主要森林植被类型土壤平均厚度为56.3~98.5 cm,其中杉木针叶林土壤最厚,达98.5 cm,灌丛土壤最薄,平均厚度仅56.3 cm。三峡库区11种主要森林植被类型总面积为3 313 251 hm2,土壤总有机碳贮量为 366.36 t,其中0~10、10~20、20~40和>40 cm土层分别占22.90%、18.36%、28.33%和30.41%。  相似文献   

9.
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

10.
Latin American subtropical dry ecosystems have experienced significant human impact for more than a century, mainly in the form of extensive livestock grazing, forest products extraction, and agriculture expansion. We assessed the regional-scale effect of land use and land cover (LULC) on patterns of richness distribution of trees, birds, amphibians, and mammals in the Northern Argentine Dry Chaco (NADC) over c. 19 million hectares. Using species distribution models in a hierarchical framework, we modeled the distributions of 138 species. First, we trained the models for the entire Argentinean Chaco with climatic and topographic variables. Second, we modeled the same species for the NADC including the biophysical variables identified as relevant in the first step plus four LULC-related variables: woody biomass, distance to crops, density of livestock-based rural settlements (puestos), and vegetation cover. Third, we constructed species richness maps by adding the models of individual species and considering two situations, with and without LULC variables. Four, richness maps were used for assessing differences when LULC variables are added and for determining the main drivers of current patterns of species richness. We found a marked decrease in species richness of the four groups as a consequence of inclusion of LULC variables in distribution models. The main factors associated with current richness distribution patterns (both negatively) were woody biomass and density of livestock puestos. Species richness in present-day Semiarid Chaco landscapes is strongly affected by LULC patterns, even in areas not transformed to agriculture. Regional-scale biodiversity planning should consider open habitats such as grasslands and savannas in addition to woodlands.  相似文献   

11.
Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.  相似文献   

12.
Projected future climate change will alter carbon storage in forests, which is of pivotal importance for the national carbon balance of most countries. Yet, national-scale assessments are largely lacking. We evaluated climate impacts on vegetation and soil carbon storage for Swiss forests using a dynamic vegetation model. We considered three novel climate scenarios, each featuring a quantification of the inherent uncertainty of the underlying climate models. We evaluated which regions of Switzerland would benefit or lose in terms of carbon storage under different climates, and which abiotic factors determine these patterns. The simulation results showed that the prospective carbon storage ability of forests depends on the current climate, the severity of the change, and the time required for new species to establish. Regions already prone to drought and heat waves under current climate will likely experience a decrease in carbon stocks under prospective ‘extreme’ climate change, while carbon storage in forests close to the upper treeline will increase markedly. Interestingly, when climate change is severe, species shifts can result in increases in carbon stocks, but when there is only slight climate change, climate conditions may reduce growth of extant species while not allowing for species shifts, thus leading to decreases in carbon stocks.  相似文献   

13.
Steppes at the northern limit of their distribution are a convenient object for studying climate-induced modifications of the environment, being sensitive to regional climate changes. Over the past 46–47 years, herbaceous vegetation in the study steppe areas has been replaced by shrubs and trees. Petrophytic steppes on hilltops and stony knolls, where conditions are not favorable for tree growth, has proved to be more resistant to such changes. In these habitats, however, the influence of surrounding forest phytocenoses has also resulted in a gradual decrease in the proportions of species from the steppe and forest–steppe floras in the structure of communities and the invasion by species typical of forest vegetation.  相似文献   

14.
基于林业生态功能和青海省森林资源清查数据,采用森林植被生物量换算因子连续函数法,系统估算与分析青海省森林植被碳储量、碳密度,研究其近20 a碳储量变化并进行现状分析。结果表明:(1)青海省森林碳储量为11 182 64222 t,占同时期全国总碳储量的198%,青海省森林生态系统中面积占较大比重的中龄林,其碳储量尚未达到最大,有较大发展空间;(2)青海省近20 a天然林类型中碳储量较大的前4种分别是:柏木(Cupressus funebris)、桦木(Betula)、杨树(Populus)、云杉(Picea asperata)天然林,表明这几种天然林在青海省森林植被中占有重要的地位,其集中分布对区域生态功能的发挥起主导作用;(3)所采用的碳储量估算方法尚存不足,在以后计算中应考虑根据不同林分类型的含碳量进行计算  相似文献   

15.
In the mountain forests of the Kahuzi-Biega National Park (KBNP), in the Democratic Republic of Congo, where Sericostachys scandens, a woody climbing plant in the Amaranthaceae family, is expanding, trees appear to be negatively affected by this liana. In order to contribute to the understanding of the links between the expansion of the liana and the decline of its hosts, we compared the density and the species richness of the trees of dbh (diameter at breast height) ≥5 cm from the plots invaded by S. scandens with those from parcels that are still free from the invasion. The results of the paired unilateral t test applied to the overall sample showed that the tree density is very low in the plots dominated by the liana (p < 0.01), but that species richness is not affected (p > 0.05). In the class with diameter [10–30 cm], the lowest density of trees corresponds to the plots colonized by S. scandens, compared to the places where the liana is not abundant (p < 0.01). Further, the density of trees is significantly lower (p < 0.05) in the classes with diameters [5–10 cm] and ≥30 cm, in plots dominated by S. scandens. In conclusion, the emergence of the liana S. scandens has a negative effect on the density of the trees in the mountain forest of the KBNP.  相似文献   

16.
Several studies have documented that vegetation in the Sahel is highly dynamic and is affected by the prevailing climatic conditions, as well as by human use of the areas. However, little is known about vegetation dynamics in the large saline areas bordering the rivers of West Africa. Combining satellite imagery, the perception of local people and botanical information, this study investigated the vegetation dynamics and the drivers of vegetation changes in Fatick Province, Senegal. Satellite images showed a change in vegetation composition, i.e., a loss of tree cover and an increase in shrub cover, herbaceous cover and tans (highly saline areas with sparse vegetation). Although the trend was the same, the three villages had different vegetation histories. A survey of the woody vegetation showed that shrubs and young trees were dominating with relatively few large trees. Local people perceived a general decline of woody plants from 1993 to 2013. Among 60 species mentioned by local people, 90 % were declining and 10 % increasing. Together the three methods documented a decrease in density and diversity of the woody vegetation, mainly influenced by salinity and land use. The large numbers of young trees indicate a potential for regeneration of some, but not all, tree species. As many tree species appreciated by local people were reported to be declining, local communities have experienced a reduction of their natural resources. Based on villagers’ recommendations for improved vegetation management, we discuss possible contributions including reforestation, desalinization and environmental protection for restoration of the vegetation.  相似文献   

17.
The vulnerability of forest ecosystem services to climate change is expected to depend on landscape characteristic and management history, but may also be influenced by the proximity to the southern range limit of constituent tree species. In the Western Rhodopes in South Bulgaria, Norway spruce is an important commercial species, but is approaching its current southern limit. Using climate sensitive forest models, we projected the impact of climate change on timber production, carbon storage, biodiversity and soil retention in two representative landscapes in the Western Rhodopes; a lower elevation landscape (1000–1450 m a.s.l) dominated by mixed species forests, and a higher elevation landscape (1550–2100 m a.s.l.) currently dominated by spruce. In both landscapes climate change is projected to induce a shift in forest composition, with drought-sensitive species, such as Norway spruce, being replaced by more drought-tolerant species such as Scots pine and black pine at lower elevations. In the higher elevation landscape a reduction in spruce growth is projected, particularly under the more severe climate change scenarios. Under most climate scenarios a reduction in growing stock is projected to occur, but under some scenarios a moderate increase in higher elevation stands (>1500 m a.s.l.) is expected. Climate change is projected to negatively influence carbon storage potential across landscapes with the magnitude depending on the severity of the climate change scenario. The impact of climate change on forest diversity and habitat availability is projected to differ considerably between the two landscapes, with diversity and habitat quality generally increasing at higher elevations, and being reduced at lower elevations. Our results suggest that if currently management practices are maintained the sensitivity of forests and forest ecosystem services in the Western Rhodopes to climate change will differ between low and higher elevation sites and will depend strongly on current forest composition.  相似文献   

18.
European forestry is facing many challenges, including the need to adapt to climate change and an unprecedented increase in forest damage. We investigated these challenges in a Norway spruce-dominated mountain region in Central Europe. We used the model Sibyla to explore forest biomass production to the year 2100 under climate change and under two alternative management systems: the currently applied management (CM), which strives to actively improve the forest’s adaptive capacity, and no management (NM) as a reference. Because biodiversity is thought to have mostly positive effects on the adaptive capacity of forests and on the quality of ecosystem services, we explored how climate change and management affect indicators of biodiversity. We found a differential response across the elevation-climatic gradient, including a drought-induced decrease in biomass production over large areas. With CM, the support of non-spruce species and the projected improvement of their growth increased tree species diversity. The promotion of species with higher survival rates led to a decrease in forest damage relative to both the present conditions and NM. NM preserved the high density of over-matured spruce trees, which caused forest damage to increase. An abundance of dead wood and large standing trees, which can increase biodiversity, increased with NM. Our results suggest that commercial spruce forests, which are not actively adapted to climate change, tend to preserve their monospecific composition at a cost of increased forest damage. The persisting high rates of damage along with the adverse effects of climate change make the prospects of such forests uncertain.  相似文献   

19.
Recent studies suggest that carbon (C) is stored in the topsoil of pastures established after deforestation. However, little is known about the long-term capacity of tropical pastures to sequester C in different soil layers after deforestation. Deep soil layers are generally not taken into consideration or are underestimated when C storage is calculated. Here we show that in French Guiana, the C stored in the deep soil layers contributes significantly to C stocks down to a depth of 100 cm and that C is sequestered in recalcitrant soil organic matter in the soil below a depth of 20 cm. The contribution of the 50–100 cm soil layer increased from 22 to 31 % with the age of the pasture. We show that long-term C sequestration in C4 tropical pastures is linked to the development of C3 species (legumes and shrubs), which increase both inputs of N into the ecosystem and the C:N ratio of soil organic matter. The deep soil under old pastures contained more C3 carbon than the native forest. If C sequestration in the deep soil is taken into account, our results suggest that the soil C stock in pastures in Amazonia would be higher with sustainable pasture management, in particular by promoting the development of legumes already in place and by introducing new species.  相似文献   

20.
Knowledge about carbon and nitrogen in plants and soils and response to fence and graze in alpine ecosystems is still rudimentary because of extremely geographic situation. The purpose of this study was to compare the difference among carbon, nitrogen concentration, and content of unit area and dynamics of above- and below-ground biomass, soil organic carbon and total nitrogen between fencing and grazing alpine meadow. The results showed that total carbon and C: N radio in the aboveground tissue were significantly higher in fenced and ungrazing grassland (FU) than those in free grazing grassland (FG). In addition, the order of total carbon and nitrogen concentration of aboveground tissue of different function groups were not identical between them; The total carbon storage (TCS) per unit of aboveground tissue, roots and 0–30 cm soil layer increased after being fenced for 5 years from free grazing grassland (9255.17 g/m2) to fenced and ungrazing grassland (12637.10 g/m2) by 26.79%. The corresponding total nitrogen storage (TNS) increased by 751.42 g/m2. Furthermore over 95% TCS (TNS) come from 0–30 cm soil layer. However there were no significant differences between fenced and ungrazing grasslands of 10 years and 5 years. Therefore fenced to exclude grazing by Tibetan sheep and yaks was an alternative approach to sequester C to the soil in alpine meadow systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号