首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
基于2018年常州市14个自动监测点位ρ(PM2.5),采用变异函数法和正交经验分解法(EOF)对其ρ(PM2.5)的空间变异性和逐日质量浓度序列的时空分区特征进行了研究。结果表明,常州市PM2.5高值均发生在11和1月,其次为2,4和5月,18:00后至次日上午时段PM2.5易出现峰值;ρ(PM2.5)具有较大的空间差异性,其在东西方向上的空间异质性程度要大于南北方向,随着站点之间空间距离的增加,各个站点局地污染分布因素的差异性逐渐增大;受市区重点污染源分布和气象条件影响,ρ(PM2.5)总体呈现沿东北向西南区域依次递减的分区特征,高值区位于常州市区中心偏北、偏东地区,低值区位于市区西南部区域,且具有明显的季节变化特征。  相似文献   

2.
江苏省2013-2016年臭氧时空分布特征   总被引:1,自引:0,他引:1  
利用2013-2016年江苏省国控空气自动站获得的臭氧(O3)观测数据,探讨江苏省O3时空变化特征。结果表明,自2013年以来江苏省大气氧化剂OX (O3和NO2)和O3浓度呈逐年升高趋势,升高速率分别为0.98×10-9a-1和3.70 μg/(m3·a),O3增幅在我国处于较高水平。在O3空间分布上,东部沿海O3浓度相对高于西部内陆,O3浓度高值由沿海地区逐渐向内陆辐散,呈现出区域性O3污染。结合经验正交分解进行聚类统计检验,结果显示江苏省O3分区主要分为苏南、苏中和苏北3类,与江苏省经济发展水平表现出一定的同步性。  相似文献   

3.
广州市近地面臭氧时空变化及其与气象因子的关系   总被引:2,自引:0,他引:2  
利用2012年1月至2016年2月广州市环境空气自动监测数据和气象观测数据,对广州市近地面臭氧的时空分布特征及其与气象因子的关系进行分析。结果表明:2012—2015年广州市臭氧日最大8 h滑动平均值的第90百分位数波动变化,年变化率依次为-14.3%、5.8%、-12.1%;广州市臭氧浓度呈现夏、秋季高,春、冬季低的显著季节变化特征;臭氧日最大8 h平均值的月均值和第90百分位数最高的月份一般分别出现在10月和7—8月;臭氧浓度的日变化曲线为单峰型,最大值一般出现在14:00或15:00;臭氧浓度随垂直高度的升高而增大,从低层(6 m点位或地面站)到中层(118 m和168 m点位)、中层到高层(488 m点位)臭氧日最大8 h滑动平均值的增长率分别为18.3%和39.1%;广州市中心城区臭氧浓度低于南北部城郊,夏、秋季高值区与夏、秋季主导风向相对应;臭氧浓度受降水、气温、相对湿度和风速等气象因子影响,臭氧浓度的超标是多种因素综合作用的结果。  相似文献   

4.
基于2017年1月至2020年6月的江西省国控点臭氧监测数据和同期气象观测数据,研究江西省臭氧污染特征及其与气象条件的关系.结果表明:2017—2019年,江西省臭氧超标时间和质量浓度呈现出逐年增加的趋势;4—6月和8—10月是江西臭氧污染高发期,其中8—10月臭氧污染最严重;臭氧1 h浓度日变化呈现"单峰"分布特征,...  相似文献   

5.
通过研究某市城区4—9月臭氧污染较严重时间段71种挥发性有机物的手工监测数据和臭氧浓度自动监测数据,分析了该市挥发性有机物在典型时段的污染特征及其与臭氧浓度变化的相关性。为该市通过控制挥发性有机物排放来精准防控臭氧污染提供参考。研究结果显示:该市挥发性有机物浓度水平与活性水平变化趋势总体一致,污染物种类在不同时间段的浓度和活性有差异,从浓度和活性角度分析得到的关键物种在不同时间段有差异,挥发性有机物的污染变化与臭氧浓度变化的相关性有时显著,有时不显著。  相似文献   

6.
选取荒漠草原无林地的PM2.5、PM10浓度以及气象因子数据,对颗粒物浓度的时间变化特征及其与气象因子的关系进行分析。结果表明:(1)1月的PM2.5、PM10月平均浓度最高,7月的PM2.5与PM10达到最低。季节尺度上PM2.5、PM10浓度变化为由大到小顺序依次为冬季>秋季>春季>夏季。(2)风速≤4.0 m/s时,随着风速增加,PM2.5、PM10浓度不断降低;当风速>4.0 m/s时,PM2.5、PM10浓度随风速增加而增加。PM2.5、PM10浓度与温度负相关。相对湿度≤50%时,随着相对湿度增加,PM2.5、PM10浓度呈增加趋势;相对湿度>50%时,随着空气湿度增加,PM2.5  相似文献   

7.
厦门水库水体颗粒物分布特征及其与环境因子的关系研究   总被引:1,自引:0,他引:1  
研究了厦门湖边水库、石兜-坂头水库水体颗粒物的分布特征及其与环境因子之间的关系。结果表明:(1)水体颗粒物平均含量以坂头库区最高,石兜库区次之,湖边水库最低,平均含量分别为31.9、27.7和23.1mg/L;在空间分布上,不同水库或库区、不同采样站位间,由于水体颗粒物的来源成因不同,其分布规律呈现出明显的差异。(2)从水体颗粒物与环境因子的关联度分析,湖边水库及石兜-坂头水库两个库区的水体颗粒物与总氮和总磷都有较大关联性。(3)利用Pearson积矩相关系数(两尾)进行检验,湖边水库及石兜-坂头水库两个库区的水体颗粒物均与总氮呈显著或极显著相关,与透明度呈显著负相关,与叶绿素a均呈负相关,与其它因子的相关规律性不明显。(4)水体颗粒物与环境因子的逐步回归分析表明,在不同的水库或库区,对水体颗粒物有显著影响的环境因子各不相同,湖边水库是高锰酸盐指数和总氮,石兜库区是高锰酸盐指数、总氮和总磷,坂头库区是pH、溶解氧和总磷。  相似文献   

8.
基于2016—2018年安徽省68个国控环境空气质量自动监测站点的臭氧(O3)监测数据,研究分析了安徽省O3污染特征及其与气象因子的相关性。结果表明:安徽省O3污染程度呈现逐年加重趋势,并有显著的季节和月度变化特征。2016—2018年,各年度单月O3日最大8小时滑动平均质量浓度第90百分位数的最大值分别出现在9月、5月、6月。O3日变化趋势为典型的单峰形,各年度最低值出现在晨间07:00左右,最高值则是在15:00—16:00。全省O3浓度总体上呈现出北高南低的空间特征。温度、相对湿度与O3浓度分别呈现显著正相关、负相关,但在不同季节存在一定差异,其中,春秋季温度与O3浓度的相关性好于夏冬季,夏季相对湿度与O3浓度的相关性最为显著。O3浓度在平均风速为2.1~2.2 m/s时更易出现超标。中部和北部城市在东南风的作用下易出现O3超标并达到O  相似文献   

9.
采用地面站点观测、卫星观测以及UWCM 0-D箱子模型模拟的方法研究湖北2013—2015年臭氧时空分布特征,并探讨其管控措施。从地面站点观测看出,时间分布上,这3年臭氧年平均浓度经历先下降后上升的过程,总体呈上升趋势,而二氧化氮年平均浓度则呈现持续下降的趋势;空间分布上,湖北各区域臭氧浓度分布不均匀,呈现东高西低的递减分布趋势。从卫星观测数据看出,2015年湖北的臭氧柱浓度高于2013、2014年同期。从空间分布来看,臭氧的柱浓度是从东北到西南、从省外到省内逐渐递减,因此推测,除了本地生成,湖北的臭氧有一部分是来源于省外传输。最大臭氧生成量法显示,烯烃(乙烯和丙烯)对湖北夏天臭氧生成量的贡献远大于其他挥发性有机化合物。箱子模型模拟的结果显示,湖北应该通过控制挥发性有机化合物的排放来降低臭氧生成速率,控制氮氧化物反而使臭氧生成速率提高。  相似文献   

10.
运用2013—2016年贵阳市环境空气自动监测站臭氧(O_3)的监测数据以及气象观测资料,分析该地区近地面O_3浓度的时空变化特征及与气象因子的关联性。结果表明,近年来贵阳市近地面O_3小时浓度均值有逐年升高趋势,增速为1. 1~5. 0μg/(m~3·a)。O_3浓度昼间变化呈明显单峰形分布,08:00左右出现最低值,15:00—16:00达到最大峰值,浓度高值主要分布在12:00—18:00。日照时数每增加1 h,则近地面O_3日最大8 h平均浓度增加8μg/m~3左右,日照时数大于8 h,则近地面O_3日最大8 h平均浓度超过100μg/m~3; O_3小时浓度与温度呈正相关(r=0. 724,α=0. 01),与相对湿度呈负相关(r=-0. 531,α=0. 01)。当日照时数大于8 h、温度超过25℃、相对湿度小于60%时,贵阳市近地面O_3容易出现高浓度值。  相似文献   

11.
为研究云南省臭氧(O3)污染特征及其与气象因子的关系,基于统计学方法及Arc GIS空间差异分析、线性趋势分析、空间离散系数等方法,对全省16个市(州) 2015—2017年33个环境监测站点的监测数据进行了研究。结果表明:研究期间,O3逐渐取代其他大气常规污染物成为首要污染物,其浓度变化范围为19~138μg/m3。云南省各市(州) O3浓度年变化呈现周期性,月度峰值集中出现在春季(3—5月);日变化呈单峰形,峰值集中在14:00—17:00。O3浓度的空间格局由纵向集聚为主转变为横向集聚为主,各集聚区交错分布,低值区由西北部转移到西南部; O3浓度增长率为正的区域集中于东北部和中部,面积约为20.81万km2,占全省总面积的54.29%,其余半环状区域增长率为负。迪庆州O3污染情况与其他市(州)明显不同,且受其他市(州)传输的影响较小。气象因子对O3浓度的影响随时间和地域条件的变化而变化,对典型市(州)(迪庆州、丽江市、昭通市) O3浓度影响最大的为偏南风,影响的浓度区间为20~160μg/m3。  相似文献   

12.
2019年6月8日至17日,安徽省滁州市发生一次持续性臭氧(O3)污染过程,O3浓度值超过国家二级标准浓度限值3%~45%。基于滁州市老年大学监测站点空气质量数据、滁州市气象站及全球资料同化系统(GDAS)气象数据,运用HYSPLIT后向轨迹模型、潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)分析方法,研究污染发生时段的气象和区域传输特征。结果表明:①在此次O3污染过程中,日最高温度的变化范围为25.5~34.7 ℃,风速整体小于4 m/s,风向以偏东风为主,午后的相对湿度在40%左右。在该时段内,滁州市基本处于均压场的控制之中,且受到锋面气旋外围下沉气流的影响,大气层结稳定。②O3污染发生期间,滁州市主要受东南方向气流的影响,但来自山东省、安徽省北部和江苏省北部的气流的影响也不容忽视。6月9日夜间至10日上午的O3浓度异常高值,与9日下午的气压异常低值及9日夜间的大气边界层高度异常高值密切相关。上述气压及大气边界层高度异常值的出现使得上风向高浓度O3被输送至滁州。③此次污染过程的潜在贡献源区主要分布于安徽省东南部、江苏省中西部和浙江省北部等地。上述区域的加权潜在源贡献因子(WPSCF)值大于0.4,加权浓度权重轨迹(WCWT)值超过了100 μg/m3。今后,滁州市在O3污染防控工作中应加强与上述区域的联防联控。  相似文献   

13.
郑州市近地面臭氧污染特征及气象因素分析   总被引:1,自引:0,他引:1  
利用国控站点空气质量在线监测数据,识别郑州市2015年近地面臭氧(O_3)污染状况、特征及与颗粒物和氮氧化物水平关系,并以烟厂站为例分析郑州市O_3污染与气象要素的相关性。结果表明:郑州市O_3日最大8 h平均值具有明显季节变化,呈现出夏季春季秋季冬季的特征,夏季岗李水库站O_3月均质量浓度为155.5μg/m3,其余站点月均质量浓度为110~150μg/m3;夏季O_3每日最大8 h浓度具有显著"周末效应",其他季节较不明显;O_3小时浓度日变化呈单峰型分布,在15:00—16:00达到峰值,早晨07:00达到谷值;前体物NOx小时浓度日变化呈双峰型分布,与O_3具有显著负相关性;气象因素相关性分析结果表明,郑州市O_3污染日多出现于高温、低湿和微风等条件,这些气象因素有利于O_3生成和累积。  相似文献   

14.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号