首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Protective ant–plant interactions provide valuable model systems to study mutualisms. Here, we summarise our recent research on chemical and physiological adaptations that contribute to the stabilisation of the mutualism between Mesoamerican Acacia host plants and their Pseudomyrmex ant inhabitants against exploiters, that is, species using host-derived rewards without rendering a service. Acacia hosts produce food bodies (FBs) and extrafloral nectar (EFN). Both types of reward are chemically adapted to their specific function as ant food and protected from different exploiters. FBs contained higher amounts of specific proteins than the leaves from which they originate. EFN possessed amino acids making it attractive for the mutualist ants and an invertase making its carbohydrate composition nutritionally suitable for the mutualists but unattractive for generalists. Moreover, pathogenesis-related proteins such as glucanases, chitinases and peroxidases were found in EFN, which likely serve as protection from microorganisms. Digestive adaptations were found that make workers of the ant mutualists dependent on the host-derived food sources, a mechanism that likely counteracts the evolution of cheaters. The ants also possessed a high diversity of bacterial associates, several of which appeared involved in nitrogen fixation, thus contributing to the nutrition of these ‘vegetarian’ ants. By contrast, a non-defending ant species that parasitises the host plants appeared physiologically less adapted to the host-derived food rewards; this species, thus, likely is competitively inferior when colony growth is limited by plant-derived rewards. In summary, several physiological adaptations of both host plants and ants stabilise the AcaciaPseudomyrmex mutualism against exploitation.  相似文献   

2.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

3.
Bottom-up effects of plant genotype on aphids, ants, and predators   总被引:1,自引:0,他引:1  
Johnson MT 《Ecology》2008,89(1):145-154
Theory predicts that bottom-up ecological forces can affect community dynamics, but whether this extends to the effects of heritable plant variation on tritrophic communities is poorly understood. In a field experiment, I contrasted the effects of plant genotype (28 genotypes; 1064 plants), aphid density, and the presence/absence of mutualistic ants in affecting the per capita population growth of a specialist aphid herbivore, as well as the effects of plant genotype on the third trophic level. Plant genotype strongly affected aphid population growth rate, explaining 29% of the total variation in growth rate, whereas aphid density and ant-aphid interactions explained substantially less variation (< 2%) in aphid population growth rate. Plant genotype also had direct and indirect effects on the third trophic level, affecting the abundance of aphid-tending ants and the richness of predators. Multiple regression identified several heritable plant traits that explained 49% of the variation in aphid growth rate and 30% of the variation in ant abundance among plant genotypes. These bottom-up effects of plant genotype on tritrophic interactions were independent of the effects of either initial aphid density or the presence/absence of mutualistic ants. This study shows that plant genotype can be one of the most important ecological factors shaping tritrophic communities.  相似文献   

4.
Pringle EG  Dirzo R  Gordon DM 《Ecology》2011,92(1):37-46
The net benefits of mutualism depend directly on the costs and effectiveness of mutualistic services and indirectly on the interactions that affect those services. We examined interactions among Cordia alliodora myrmecophytic trees, their symbiotic ants Azteca pittieri, coccoid hemipterans, and foliar herbivores in two Neotropical dry forests. The tree makes two investments in symbiotic ants: it supplies nesting space, as domatia, and it provides phloem to coccoids, which then produce honeydew that is consumed by ants. Although higher densities of coccoids should have higher direct costs for trees, we asked whether higher densities of coccoids can also have higher indirect benefits for trees by increasing the effectiveness of ant defense against foliar herbivores. We found that trees benefited from ant defense against herbivores. Ants defended trees effectively only when colonies reached high densities within trees, and ant and coccoid densities within trees were strongly positively correlated. The benefits of reduced foliar herbivory by larger ant colonies were therefore indirectly controlled by the number of coccoids. Coccoid honeydew supply also affected per capita ant aggression against tree herbivores. Ants experimentally fed a carbohydrate-rich diet, analogous to sugar obtained from coccoids, were more aggressive against caterpillars per capita than ants fed a carbohydrate-poor diet. Ant defense was more effective on more valuable and vulnerable young leaves than on older leaves. Young domatia, associated with young leaves, contained higher coccoid densities than older domatia, which suggests that coccoids may also drive spatially favorable ant defense of the tree. If higher investments by one mutualistic partner are tied to higher benefits received from the other, there may be positive feedback between partners that will stabilize the mutualism. These results suggest that higher investment by trees in coccoids leads to more effective defense by ants against the tree's foliar herbivores.  相似文献   

5.
Lach L 《Ecology》2007,88(8):1994-2004
The loss of biodiversity and associated ecosystem services are major threats posed by the spread of alien invasive species. Invasive ants are frequently associated with declines in the diversity of ground-dwelling arthropods but also may affect plants through their attraction to floral nectar and tending of hemipterans. Protea nitida is a tree native to the South African fynbos that hosts a native membracid, Beaufortiana sp., which is tended by ants. Here I compare Argentine ants (Linepithema humile) to native ants in their attraction to P. nitida inflorescences in the presence and absence of the membracid, and their effects on other floral arthropod visitors, seed set, and ovule predation. Argentine ant discovery of inflorescences increased at least 13-fold when membracids were present on the branch, whereas native ant discovery of inflorescences was only doubled by membracid presence at one site in one study year and was unaffected in the other three site-years. Excluding Argentine ants from inflorescences resulted in an increase in several arthropod taxa and potential pollinators; native ant exclusion had no positive effects. Thus the mutualism between Argentine ants and the membracid is facilitating pollinator deterrence by the ants. Though Argentine ants were not associated with a decline in P. nitida seed set or ovule predation, declines in generalist insect pollinators may have ramifications for the 83% of fynbos plants that are insect pollinated. Pitfall traps showed that Argentine ants were not more abundant than native ants in non-invaded sites. Focusing only on abundance on the ground and displacement of ground-dwelling arthropod fauna may lead to an underestimate of the effects of invasive ants on their adopted communities.  相似文献   

6.
Galen C  Geib JC 《Ecology》2007,88(5):1202-1209
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.  相似文献   

7.
Recent studies of plant-animal mutualistic networks have assumed that interaction frequency between mutualists predicts species impacts (population-level effects), and that field estimates of interaction strength (per-interaction effects) are unnecessary. Although existing evidence supports this assumption for the effect of animals on plants, no studies have evaluated it for the reciprocal effect of plants on animals. We evaluate this assumption using data on the reproductive effects of pollinators on plants and the reciprocal reproductive effects of plants on pollinators. The magnitude of species impacts of plants on pollinators, the reciprocal impacts of pollinators on plants, and their asymmetry were well predicted by interaction frequency. However, interaction strength was a key determinant of the sign of species impacts. These results underscore the importance of quantifying interaction strength in studies of mutualistic networks. We also show that the distributions of interaction strengths and species impacts are highly skewed, with few strong and many weak interactions. This skewed distribution matches the pattern observed in food webs, suggesting that the community-wide organization of species interactions is fundamentally similar between mutualistic and antagonistic interactions. Our results have profound ecological implications, given the key role of interaction strength for community stability.  相似文献   

8.
Tolerating castration by hiding flowers in plain sight   总被引:1,自引:0,他引:1  
A key challenge in the study of inter-specific cooperation, or mutualisms, is to understand the mechanisms that prevent cheating. However, many mutualisms are still invaded by parasites, and we propose that plant ‘tolerance strategies’, which allow an individual to re-grow and/or reproduce after damage, might have evolved to recover some of the fitness lost to parasitism. We focus on the ant plant Cordia nodosa and its protecting ant symbionts Allomerus octoarticulatus and Azteca spp. Allomerus is a castration parasite, destroying host flowers. However, some flowers are produced on new branch shoots, where they escape castration. Here, we ask whether C. nodosa tolerates castration by directing floral growth to new shoots. We find that C. nodosa produces four times more floral buds on the new shoots of Allomerus-inhabited plants, compared to Azteca-inhabited plants. Additionally, on Allomerus-inhabited plants, the production of floral buds is three times greater on new than on mature shoots, and more floral buds are grown on plants with new shoots than on those without. We conclude therefore that C. nodosa tolerates castration by re-allocating floral resources to new shoots. We also test whether tolerance exploits behavioural differences between the brood-tending ‘nurse’ ant worker caste, which is active on mature shoots, and the new shoot-protecting ‘patroller’ caste. Behavioural assay experiments reveal that nurse ants are strongly attracted to extracts of flowers, whereas patrollers are not, suggesting that nurses are the primary castrating caste. Thus, producing flowers on new shoots avoids the castrating caste. We finish by proposing that tolerance strategies can promote the evolution and maintenance of mutualism.  相似文献   

9.
Summary (1) Females of the myrmecophilous lycaenid butterfly, Jalmenus evagoras are far more likely to lay eggs on plants that contain their attendant ants, Iridomyrmex sp. 25 than on plants without ants, although the clutch sizes of individual egg masses laid in either situation is the same. (2) Ovipositing females respond to the presence or absence of ants before they alight on a potential food plant. Once they have landed, they are equally likely to ley eggs whether or not they encounter ants. (3) Ovipositing females prefer to lay eggs on plants that contain ant tended homopterans than on plants that contain only a few foraging ants. The presence of ant tended homopterans can act as a strong stimulus to induce females to lay eggs on plant species that differ from their original host species. (4) Ant dependent oviposition behavior has been described or suggested in 46 species of lycaenid and one riodinid. In general, the more dependent a species is upon ants for either food or protection, the more likely it is to use ants as cues in oviposition. Prominent characteristics of lycaenids that have ant dependent oviposition are described and discussed. (5) Myrmecophilous lycaenids that may use ants as cues in oviposition feed on a significantly wider range of plants than non-myrmecophilous lycaenids. Possible reasons for this pattern and its ecological significance are discussed.  相似文献   

10.
Palmer TM  Brody AK 《Ecology》2007,88(12):3004-3011
The foundation of many plant-ant mutualisms is ant protection of plants from herbivores in exchange for food and/or shelter. While the role of symbiotic ants in protecting plants from stem- and leaf-feeding herbivores has been intensively studied, the relationship between ant defense and measures of plant fitness has seldom been quantified. We studied ant aggression, damage by herbivores and seed predators, and fruit production among Acacia drepanolobium trees occupied by four different acacia-ant species in an East African savanna. Levels of ant aggression in response to experimental disturbance differed strongly among the four species. All four ant species recruited more strongly to new leaf growth on host plants following disturbance, while recruitment to developing fruits was on average an order of magnitude lower. Host plants occupied by more aggressive ant species suffered significantly less vegetative damage from leaf-feeding insects, stem-boring beetles, and vertebrate browsers than host plants occupied by less aggressive ant species. However, there were no differences among fruiting host plants occupied by different ant species in levels of seed predation by bruchid seed predators. Fruit production on host trees was significantly correlated with tree stem diameter but not with the identity of resident ants. Our results demonstrate that defense of host plants may differ substantially among ant species and between vegetative and reproductive structures and that fruit production is not necessarily correlated with high levels of aggression by resident ants.  相似文献   

11.
Little AE  Currie CR 《Ecology》2008,89(5):1216-1222
Multiplayer symbioses are common in nature, but our understanding of the ecological dynamics occurring in complex symbioses is limited. The tripartite mutualism between fungus-growing ants, their fungal cultivars, and antibiotic-producing bacteria exemplifies symbiotic complexity. Here we reveal how black yeasts, newly described symbionts of the ant-microbe system, compromise the efficiency of bacteria-derived antibiotic defense in fungus-growing ants. We found that symbiotic black yeasts acquire nutrients from the ants' bacterial mutualist, and suppress bacterial growth. Experimental manipulation of ant colonies and their symbionts shows that ants infected with black yeasts are significantly less effective at defending their fungus garden from Escovopsis, a prevalent and specialized pathogen. The reduction of mutualistic bacterial biomass on ants, likely caused by black yeast symbionts, apparently reduces the quantity of antibiotics available to inhibit the garden pathogen. Success of the ant-fungal mutualism is directly dependent on fungus garden health. Thus our finding that black yeasts compromise the ants' ability to deal with the garden parasite indicates that it is an integral component of the symbiosis. This is further evidence that a full understanding of symbiotic associations requires examining the direct and indirect interactions of symbionts in their ecological community context.  相似文献   

12.
Direct and indirect effects of ants on a forest-floor food web   总被引:1,自引:0,他引:1  
Moya-Laraño J  Wise DH 《Ecology》2007,88(6):1454-1465
Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG predator groups with disparate predatory behaviors, complexities that will have consequences for functioning of the forest-floor food web.  相似文献   

13.
Abstract: The degree to which changes in community composition mediate the probability of colonization and spread of non‐native species is not well understood, especially in animal communities. High species richness may hinder the establishment of non‐native species. Distinguishing between this scenario and cases in which non‐native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce the abundance of native ants and fire ants in four experimental plots. We then observed the reassembly and reestablishment of the ants in these plots for 1 year after treatment. The abundance of fire ants in treated plots did not differ from abundance in control plots 1 year after treatment. Likewise, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants and fire ants to disturbance can be comparable.  相似文献   

14.
Pachepsky E  Nisbet RM  Murdoch WW 《Ecology》2008,89(1):280-288
In many consumer-resource systems the consumer population has synchronized reproduction at regular intervals (e.g., years) but consumes the resource and dies continuously, while the resource population grows continuously or has overlapping generations that are short relative to the time between consumer reproductive events. Such systems require "semi-discrete" models that have both discrete and continuous components. This paper defines and analyzes a canonical, semi-discrete model for a widespread class of consumer-resource interactions in which the consumer is a discrete breeder and the resource reproduction can be described continuously. The model is the analog of the Nicholson-Bailey and Lotka-Volterra models for discrete and continuous systems, respectively. It thereby develops the basis for understanding more realistic, and hence more complex, semi-discrete models. The model can display stable equilibria, consumer-resource cycles, and single-species-like overcompensation cycles. Cycles are induced by high maximum fecundity in the consumer. If the resource grows rapidly and the consumer has high maximum fecundity, the model reduces to a single-species discrete-time model of the consumer, which can exhibit overcompensation cycles. By contrast, such cycles in discrete consumer-resource models typically occur only in the resource once the consumer is extinct. Also unlike a common class of discrete models that do not display consumer-resource cycles with periods below four years, semi-discrete models can exhibit consumer-resource cycles with periods as short as two years.  相似文献   

15.
Moeller DA  Geber MA  Eckhart VM  Tiffin P 《Ecology》2012,93(5):1036-1048
Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.  相似文献   

16.
Chemotactile cues unintentionally left by animals can play a major role in predator–prey interactions. Specialized predators can use them to find their prey, while prey individuals can assess predation risk. However, little is known to date about the importance of chemotactile cues for generalist predators such as ants. Here, we investigated the response of a generalized predatory ant, Formica polyctena, to cues of two taxonomically distinct prey: a spider (Pisaura mirabilis) and a cricket (Nemobius sylvestris). In analogy, we studied whether crickets and spiders showed antipredator behavior in response to ant cues. When confronted with cues of the two prey species, Formica polyctena workers showed increased residence time and reduced movement speed, which suggests success-motivated searching behavior and thus increased foraging effort. The ants’ response did not differ between cues of the two prey species, coinciding with similar aggression and consumption rates of dead prey. However, the cuticular hydrocarbons, which likely resemble part of the potential cues, differed strongly between the species, with only few methyl-branched alkanes in common. This suggests that ants respond to multiple compounds left by other organisms with prey-search behavior. The two prey species, in turn, showed no detectable antipredator behavior in response to ant cues. Our study shows that ants can detect and respond to chemotactile cues of taxonomically and ecologically distinct prey species, probably to raise their foraging success. Using such chemotactile cues for prey detection may drastically increase their foraging efficiency and thus contribute to the high ecological success of ants.  相似文献   

17.
Kondoh M  Kato S  Sakato Y 《Ecology》2010,91(11):3123-3130
Nested structure, in which specialists interact with subsets of species with which generalists interact, has been repeatedly found in networks of mutualistic interactions and thus is considered a general feature of mutualistic communities. However, it is uncertain how exclusive nested structure is for mutualistic communities since few studies have evaluated nestedness in other types of networks. Here, we show that 31 published food webs consist of bipartite subwebs that are as highly nested as mutualistic networks, contradicting the hypothesis that antagonistic interactions disfavor nested structure. Our findings suggest that nested networks may be a common pattern of communities that include resource-consumer interactions. In contrast to the hypothesis that nested structure enhances biodiversity in mutualistic communities, we also suggest that nested food webs increase niche overlap among consumers and thus prevent their coexistence. We discuss potential mechanisms for the emergence of nested structure in food webs and other types of ecological networks.  相似文献   

18.
Leaf-cutting ants exhibit an aggressive alarm response. Yet in most alarm reactions, not all of the ants encountering a disturbance will respond. This variability in behaviour was investigated using field colonies of Atta capiguara, a grass-cutting species. Crushed ant heads were applied near foraging trails to stimulate alarm reactions. We found that minor workers were disproportionately likely to respond. Only 34.7DŽ.8% of ants travelling along foraging trails were minor workers, but 82.1Lj.1% of ants that responded were minors. Workers transporting grass did not respond at all. The alarm response was strongest at the position and time where minors were most abundant. Ants were more likely to respond when they were travelling along trails with low rather than high traffic. Minor workers followed a meandering route along the trail, compared with the direct route taken by foragers. We argue that an important function of minor workers on foraging trails is to patrol the trail area for threats, and that they then play the key role in the alarm reaction.  相似文献   

19.
Myrmecophiles, i.e., organisms associated with ants live in a variety of ecological niches in the vicinity or inside ant colonies and employ different strategies to survive ant encounters. Because different niches are characterized by different encounter rates with host ants, strategies used to avoid ant aggressions should depend on these niches. This hypothesis was studied with three rove beetle species of the genus Pella, which are myrmecophiles of the ant Lasius fuliginosus and the non-myrmecophilous relative Drusilla canaliculata. Behavioral tests in the field revealed that Pella species are better adapted to interactions with ants than D. canaliculata, but that they use species-specific strategies in ant interactions. Pella cognata and Pella funesta avoid encounters with ants by swift movements. Chemical analyses of the defensive tergal gland secretions showed that P. cognata has replaced the aggression inducing undecane by the behaviorally neutral tridecane. P. funesta repels the ants by releasing the panic alarm pheromone sulcatone from its tergal gland resulting in an “ant free space” around the beetles. Finally, Pella laticollis uses a specific and unique appeasing behavior. Behavioral and chemical data did not reveal any indication for the mimicry of the ants' cuticular hydrocarbon profiles by any of the beetle species. It is discussed that the employed strategies correlate with the ecological niches of the beetles. P. cognata and P. funesta are living along ant trails with ample space to escape and the employed strategies are probably sufficient to escape from dangerous conflicts. In contrast, P. laticollis lives in refuse areas of ant nests with frequent ant encounters, and its appeasement strategy allows it to stay at the encounter site.  相似文献   

20.
We provide evidence for the proximate role of food in sex allocation by an ant species, and demonstrate how identity of the homopteran partner affects benefits to colonies of a plant-symbiotic ant. The system studied includes a plant-ant that nests in swollen hollowed internodes of a myrmecophyte, and two species of homopteran trophobionts (a coccid and a pseudococcid) tended inside domatia by these ants, for which they are an essential source of food. Total investment in pupae was greater for ant colonies that tended solely or primarily coccids than for those that tended pseudococcids. In particular, biomass invested in sexuals increased more rapidly with size of the colony in trees where ants tended coccids. This greater investment in sexuals was not made at the expense of investment in workers, but reflected increased resources available to coccid-tending colonies. Higher reproductive output indicates that ant fitness may be greater when they tend coccids. These additional resources led to a greater increase in production of alate females than in that of males. Consequently, the sex investment ratio of coccid-tending colonies was more female biased than in those that tended pseudococcids. Differences in resource supply affected numbers of individuals produced but not per-individual investment, with one partial exception: in very small colonies, pseudococcid-tending colonies produced small workers while coccid-tending colonies did not, further underlining the higher resource supply to coccid-tending colonies. This study provides evidence for the proximate role played by food in sex allocation at the colony level. We discuss our results in the context of hypotheses aimed at explaining sex ratio at the colony and population levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号