首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are few data on the reproductive biology of coral species living in temperate zones, particularly in the Mediterranean Sea. Leptopsammia pruvoti is a solitary coral that is commonly found in sea caves and under overhangs throughout the Mediterranean basin and along European coasts from Portugal to southern England. In this paper, we describe its annual reproductive cycle in the eastern Ligurian Sea near the city of Leghorn (Tuscany, Italy). Polyps were sexually mature at 3 mm in length (maximum diameter of the oral disc), were dioecious with a sex ratio of 1:1, and brooded their larvae. The maturation of spermaries took 12 months and oocytes 24 months. The rate of gonad development increased significantly from November to January, fertilization occurred from January to April and planulation during May and June. Seasonal variations in water temperature and photoperiod may have played an important role in regulating reproductive events. The amount of energy devoted to male gametogenesis (quantified by gonad index) was significantly higher in the sex separated species L. pruvoti than in the hermaphroditic dendrophylliid Balanophyllia europaea, whose reproduction has been studied in a previous work. We hypothesize that this difference is due to the contrasting sexuality or fertilization biology of these two species (cross-fertilization in the sex separated L. pruvoti versus possibly self-fertilization in the hermaphroditic B. europaea). Greater male sexual allocation in reproductive strategies characterized by dioecism or cross-fertilization when compared to those characterized by hermaphroditism or self-fertilization is common in plant mating systems. In relation to other solitary dendrophylliids, L. pruvoti presents an ‘r’-reproductive strategy.  相似文献   

2.
Carbonic anhydrase (CA, EC 4.2.1.1) activity was detected in 22 species of tropical cnidarians which contain endosymbiotic dinoflagellates (=zooxanthellae). CA activity was 2 to 3 times higher in animal tissue than in algae and ca. 29 times higher in zooxanthellate than azooxanthellate species. It was also higher in the zooxanthellate tentacle tissue than in the azooxanthellate column tissue of the anemone Condylactis gigantea. CA was therefore significantly related to the presence of endosymbiotic algae. Further results indicated that CA functions in the photosynthetic carbon metabolism of zooxanthellate cnidarians as evidenced by (1) low CA activity in shade-adapted and deep water colonies compared to the more productive shallow water, light-adapted colonies of the coral Stylophora pistillata, and (2) the 56 to 85% reduction in photosynthetic carbon assimilation by zooxanthellae in situ in the presence of Diamox, an inhibitor of CA. Although CA has been proposed to function in calcification, its association with zooxanthellae and photosynthetic activity in both calcifying and non-calcifying associations suggests a role in photosynthetic metabolism of algal/cnidarian symbioses. It is proposed that CA acts as a CO2 supply mechanism by releasing CO2 from bicarbonate, and enabling zooxanthellae to maintain high rates of photosynthesis in their intracellular environment.  相似文献   

3.
In corals where complex life history processes decoupling age from size (e.g., fragmentation, fusion, partial colony mortality) are rare or clearly detectable, individual age may be determined from size, and age-based growth and population dynamic models may be applied. One example is the solitary Mediterranean coral Leptopsammia pruvoti Lacaze-Duthiers 1897, whose population size and structure, and growth rates were determined at Calafuria (43°28′N and 10°20′E), Ligurian Sea, from December 2007 to June 2009. Growth rate decreased with increasing size. The growth curve derived from field measurements confirmed the one obtained by growth band analysis. The frequency of individuals decreased exponentially with age, indicating a steady state population. Turnover time was 2.3 years. Maximum life span was 13 years. Most reproductive output was from intermediate age classes (6 years), while older individuals (>7 years), although having higher fecundity, were rare and accounted for a minority of population reproductive output. In comparison with other solitary dendrophylliids, L. pruvoti life strategy was characterized by a reproduction with r-strategy correlates (high fecundity, short embryo incubation, small planula size, fast achievement of sexual maturity), and a rate of demographic renewal occurring halfway along the rK continuum (intermediate turnover time and maximum longevity).  相似文献   

4.
UV-absorbing substances in zooxanthellate and azooxanthellate clams   总被引:2,自引:0,他引:2  
The effects of UV-A and UV-B radiation on photosynthesis of zooxanthellae within the siphonal mantle of the giant clam, Tridacna crocea, and in isolation were studied. While UV-B irradiation (2.4 W m−2, 20 min) completely suppressed photosynthesis of the isolated zooxanthellae, it had little effect on their photosynthetic ability if they were irradiated while within the siphonal mantle of the host tissue. Chemical analysis of the siphonal mantle of T. crocea showed the presence of significant amounts of mycosporine-like amino acids (MAAs), which absorb UV-A and -B light. However, no MAA was detected in the isolated zooxanthellae. MAAs were concentrated in the siphonal mantle and kidney tissues in comparison with other tissues. In the siphonal mantle, MAA concentrations were the highest in the outermost surface layer where most of the zooxanthella cells resided. This indicates that the zooxanthellae are protected from UV radiation by a screen of concentrated MAAs in the host clam. Aside from T. crocea, significant amounts of MAAs were found not only in other zooxanthellate clams, such as T. derasa, Hippopus hippopus, Colculum cardissa and Fragum unedo, but also in a closely related azooxanthellate clam, Vasticardium subrugosum. On the other hand, no MAA was detected in any of the zooxanthellae from these zooxanthellate clams. No MAA was detected in the tissues of a deep-sea bivalve, Calyptogena soyoae. Although MAAs seem to block strong UV radiation in the shallow-water clam, they are probably not essential for the clam's life in the dark. MAAs in shallow-water clams may be derived from food and accumulated in their tissues, especially in the siphonal mantle and kidney. Received: 29 November 1996 / Accepted: 13 January 1997  相似文献   

5.
This study focusses on the nature and extent of variation in mycosporine-like amino acids (MAAs) in relation to annual cycles in solar radiation, seawater temperature, and reproduction in reef-flat populations of two soft coral species. The results show MAA tissue concentrations in shallow water colonies of Lobophytum compactum and Sinularia flexibilis to be significantly correlated to annual cycles in solar radiation (P<0.0006 and P<0.0005, respectively) and seawater temperature (P<0.0006 and P<0.0004, respectively). Evidence of seasonal cycles in MAA levels in the tissues of shallow-reef invertebrates positively correlating with annual cycles in solar radiation and temperature suggests that they are an integral component of the soft corals' biochemical defence system against high irradiance and/or temperature stress and thus bleaching. This is further corroborated by the higher production of MAAs in females than males prior to spawning (up to 67% and 56% for L. compactum and S. flexibilis, respectively), presumably to provide a high level of protection against irradiance stress for progeny.  相似文献   

6.
Epizoic worms were found to occur on certain coral colonies from reefs off the coast of Eilat (Red Sea). We identified 14 coral species infested by acoelomorph worms at a depth range of 2–50 m. The host corals were all zooxanthellate and included both massive and branching stony corals and a soft coral. Worms from all hosts were identified as belonging to the genus Waminoa and contained two distinct algal symbionts differing in size. The smaller one was identified as Symbiodinium sp. and the larger one is presumed to belong to the genus Amphidinium. Worm-infested colonies of the soft coral, Stereonephthya cundabiluensis, lacked a mucus layer and exhibited distinct cell microvilli, a phenotype not present in colonies lacking Waminoa sp. In most cases, both cnidarian and Acoelomorph hosts displayed high specificity for genetically distinctive Symbiodinium spp. These observations show that the epizoic worms do not acquire their symbionts from the “host” coral.  相似文献   

7.
The reproductive ecology of Tubastraea coccinea Lesson, an azooxanthellate tropical scleractinian coral, was studied over various periods from 1985 to 2006 at four principal eastern Pacific locations in Costa Rica, Panamá, and the Galápagos Islands (Ecuador). This small (polyp diameter 0.8–1.0 cm), relatively cryptic species produced ova and planulae year round, including colonies with as few as 2–10 polyps. Of 424 colonies examined histologically, 13.7% contained both ova and sperm. Mature ova varied in diameter from ∼300 to 800 μm and the time from spawning and fertilization of oocytes to release of brooded planulae was about 6 weeks. Planulae were 0.5–1.5 mm long and they settled and metamorphosed on a variety of substrates after 1–3 days. Spermaries, though more difficult to distinguish in histological sections, were present throughout the year. Spent spermaries were never observed in sections, but several colonies in Panamá and the Galápagos Islands released sperm from night one to night five after full moon, indicating the potential for cross-fertilization among colonies. Planula release was observed at Uva Island (Panamá) in March, May, June, and July, and in general planula presence was higher at warm ocean temperatures at all sites, whether or not the sites were influenced by seasonal upwelling. Annual fecundity estimates for T. coccinea are comparable with other high fecundity brooding species, including the zooxanthellate Porites panamensis, with which it co-occurs in Panamá. Tubastraea coccinea is widely distributed in the tropical Indo-Pacific and has colonized substrates in the western Atlantic. In addition to the reproductive characteristics described in the present study, other features of the biology of T. coccinea, such as an ability to withstand conditions that produce bleaching and mortality in zooxanthellate species, may account for its widespread, low-latitude distribution in multiple oceans. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

8.
M. Fine  H. Zibrowius  Y. Loya 《Marine Biology》2001,138(6):1195-1203
The scleractinian coral Oculina patagonica De Angelis is a new immigrant from the Southwest Atlantic to the Mediterranean Sea, having established itself only recently along the Israeli coast. This species is the only scleractinian coral reported to have invaded a new region. In order to understand the swift establishment of this species along the Israeli coast, from 1994 to 1999 we studied its distribution, abundance, reproduction, recruitment, survival, and the effect of bleaching events on its population abundance. In addition, population studies of O. patagonica were performed at several localities along the eastern and western Mediterranean coasts. Highest abundance was recorded along the Spanish coast, reaching 30lj colonies per 10 m line transect in shallow water. Second in abundance was the Israeli coast, with a maximum of 10DŽ colonies per transect. O. patagonica was rare along the coast of Italy, and absent along the Mediterranean coast of France. During the study, both mortality and recruitment along the Israeli coast were very low. In contrast, recruitment along the Spanish coast was very high. Reproduction of the species was studied using gonadal histology. O. patagonica is gonochoric. Female gonads were first observed in May and male gonads in July, both reaching maturity in late August and early September. Naturally occurring azooxanthellate colonies of O. patagonica inhabiting small dark caves developed gonads and spawned in parallel to zooxanthellate colonies exposed to light. No gonads were found in zooxanthellate colonies that underwent bleaching during the reproduction season. The high incidence of bleaching events along the Israeli coast observed throughout the years of this study may explain the low recruitment of new colonies during the same period. In view of its current recruitment patterns, we expect further expansion of O. patagonica in range and abundance in the western Mediterranean, but very small expansion of the population in the eastern Mediterranean, due to repetitive annual bleaching events.  相似文献   

9.
Electrophoresis was used to provide genetic evidence of the mode of production of brooded planulae in each of four species of scleractinian coral collected from the central region of the Great Barrier Reef during September, October and November 1984. Comparisons were made of the multi-locus genotypes of planulae and their broodparents for two ahermatypic (non zooxanthellate) species,Tubastraea diaphana andT. coccinea and two hermatypic (zooxanthellate) species,Acropora palifera andSeriatopora hystrix. For both ahermatypic species, all planulae were found to be genetically identical to their broodparents, including 91 planulae which were heterozygous for at least one locus. These results are consistent with asexual (ameiotic) reproduction. In contrast, non-parental genotypes were detected in the majority of hermatypic broods, which is consistent with expectations for sexual reproduction with at least some outcrossing. These data confirmed that brooded planulae may be produced both sexually and asexually and countered the suggestion that electrophoretic studies of hermatypic corals may be weakened by the contaminating effect of the enzymes of their symbiotic xooxanthellae.Contribution No. 306 of the Australian Institute of Marine Science  相似文献   

10.
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf. Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.  相似文献   

11.
Reports of bathymetric decrease in the total mycosporine-like amino acid (MAA) concentration of benthic invertebrates suggest that light gradients may be important determinants of MAA content. With the pronounced diel light changes, distinct temporal variations in MAA concentrations might also be expected. We examined the changes in the abundance of MAA in three shallow-water scleractinian corals, Pavona divaricata, Galaxea fascicularis and Montipora digitata from Okinawa, Japan, in relation to daily cycles in solar radiation and tested whether the species have different capabilities for protection against UVR depending on their MAA composition. The results show that symbiotic algae freshly isolated from the investigated coral species do not contain MAAs and that distribution of these compounds resided only within the animal tissue. Total MAA content in the tissue of P. divaricata, G. fascicularis and M. digitata rose rapidly at midday and significantly dropped at night. The observed variations were by a factor of two and, thus, very dramatic. For all the investigated coral species, total MAA concentrations were significantly correlated with the diurnal cycle in solar radiation, during both winter and summer seasons. Seawater temperature was significantly correlated with MAA levels only in the June experiment, but represented no more than 20% of the MAA variation in all three coral species, whereas solar radiation explained 60–70% of the MAA fluctuations. This suggests that MAAs are an integral component of the hard corals biochemical defense system against high solar irradiance stress. The diurnal increase in total MAA concentrations was due to an increase in the concentration of imino-MAA species of up to 2–2.5-fold of their pre-dawn values. In contrast, the oxocarbonyl-MAA mycosporine-glycine (Myc-Gly) showed the lowest (Tukey–Kramer HSD test: P<0.05) values at midday, compared to afternoon and night hours. Analysis of diel changes in chlorophyll fluorescence and chlorophyll a content of the investigated species revealed that P. divaricata and G. fascicularis were less sensitive to the high levels of ambient irradiance compared to M. digitata. In P. divaricata and G. fascicularis, Myc-Gly, an MAA with an antioxidant function, is the most abundant MAA, contributing about 70% to the total MAA pool, whereas the major MAA factions in M. digitata were represented by oxidatively robust imino-MAAs. We speculate that MAAs furnish scleractinian corals with protection from biologically damaging ultraviolet radiation through both the direct sunscreening activity of imino-MAAs and the antioxidant properties of oxocarbonyl-MAAs and suggest that the predominance, in the host tissue, of MAA species with an antioxidant ability may render corals more tolerant to high photosynthetically active and ultraviolet radiation.Communicated by T. Ikeda, Hakodate  相似文献   

12.
Differential susceptibility among reef-building coral species can lead to community shifts and loss of diversity as a result of temperature-induced mass bleaching events. We evaluate environmental influences on coral colony bleaching over an 8-year period in the Florida Keys, USA. Clustered binomial regression is used to develop models incorporating taxon-specific responses to the environment in order to identify conditions and species for which bleaching is likely to be severe. By building three separate models incorporating environment, community composition, and taxon-specific responses to environment, we show observed prevalence of bleaching reflects an interaction between community composition and local environmental conditions. Environmental variables, including elevated sea temperature, solar radiation, and reef depth, explained 90% and 78% of variability in colony bleaching across space and time, respectively. The effects of environmental variables were only partially explained (33% of variability) by corresponding differences in community composition. Taxon-specific models indicated individual coral species responded differently to local environmental conditions and had different sensitivities to temperature-induced bleaching. For many coral species, but not all, bleaching was exacerbated by high solar radiation. A 25% reduction in the probability of bleaching in shallow locations for one species may reflect an ability to acclimatize to local conditions. Overall, model results indicate predictions of coral bleaching require knowledge of not just the environmental conditions or community composition, but the responses of individual species to the environment. Model development provides a useful tool for coral reef management by quantifying the influence of the local environment on individual species bleaching sensitivities, identifying susceptible species, and predicting the likelihood of mass bleaching events with changing environmental conditions.  相似文献   

13.
Information on the reproduction in scleractinian solitary corals and in those living in temperate zones is notably scant. Leptopsammia pruvoti is a solitary coral living in the Mediterranean Sea and along Atlantic coasts from Portugal to southern England. This coral lives in shaded habitats, from the surface to 70 m in depth, reaching population densities of >17,000 individuals m–2. In this paper, we discuss the morphological aspects of sexual reproduction in this species. In a separate paper, we report the quantitative data on the annual reproductive cycle and make an interspecific comparison of reproductive traits among Dendrophylliidae aimed at defining different reproductive strategies. The present study on L. pruvoti is the first in-depth investigation of the reproductive biology of a species of this genus. As expected for a member of the family Dendrophylliidae, L. pruvoti is a gonochoric and brooding coral. The gastrodermal tissue of the gametogenetic mesenteries we examined was swollen and granular, which led us to hypothesize that interstitial cells could have a trophic function favoring gametogenesis. Undifferentiated germ cells arose in the gastrodermis and subsequently migrated to the mesoglea, where they completed gametogenesis. During spermary development, spermary diameter increased from a minimum of 14 m during the immature stages to a maximum of 410 m during the mature stages. As oogenesis progressed, we observed a gradual reduction in the nucleus to cytoplasm ratio due to the steady synthesis of yolk. During the final stages of oogenesis, after having migrated to the extreme periphery of the oocyte and having firmly adhered to the oolemma, the nucleus became indented, assuming a sickle or dome shape. We can hypothesize that the nucleus migration and change of shape may have to do with facilitating fertilization and determining the future embryonic axis. During oogenesis, oocyte diameter increased from a minimum of 20 m during the immature stage to a maximum of 680 m when mature. Embryogenesis took place in the coelenteron. We did not see any evidence that even hinted at the formation of a blastocoel; embryonic development proceeded via stereoblastulae with superficial cleavage. Gastrulation took place by delamination. Early and late embryos had diameters of 204–724 m and 290–736 m, respectively. When released, the larvae had completed ontogenesis and swam by a ciliary movement with the aboral pole at the anterior, their shape varied from spherical to cylindrical (in the latter the oral–aboral axis measured 695–1,595 m and the transversal one measured 267–633 m).Communicated by R. Cattaneo-Vietti, Genova  相似文献   

14.
We examined the relationships between daily pattern of settlement and environmental parameters during two consecutive years in two littoral fishes, Lipophrys trigloides (Blenniidae) and Chromis chromis (Pomacentridae), in the NW Mediterranean Sea. We also used individual early-life traits (pelagic larval duration, size at hatching and size at settlement) calculated from otoliths, to study the proximate causes of settlement variability and size-selective mortality after settlement. Several early-life characteristics of L. trigloides (planktonic larval duration and size at hatching), and environmental variables averaged during the whole planktonic period (e.g. water temperature, wave height, solar radiation) were related with the magnitude of settlement. In contrast, C. chromis showed no significant relationships between early-life traits and the magnitude of settlement, and a weak relationship between settlement magnitude and environmental variables. Furthermore, juvenile survivors showed larger size at hatching than settlers, indicating that size at hatching affected the juvenile survival of the two species. These results suggest that survival was linked largely to conditions at hatching for both species.  相似文献   

15.
Monthly skeletal extension rates were measured in colonies of Montastraea annularis and M. faveolata growing at Mahahual and Chinchorro Bank, in the Mexican Caribbean. Temperature, light extinction coefficient (kd), sedimentation rate, dissolved nutrients and wave energy were used as indicators of environmental conditions for coral growth. Zooxanthella density and mitotic index, nitrogen, phosphorous and protein in coral tissue, and living tissue thickness were measured during periods of high-density-band (HDB) and low-density-band (LDB) formation. To test their value as indirect measures of competition between zooxanthellae and host, as well as coral health and performance in both species, these biological parameters were also measured, during the HDB-formation period, in corals collected at La Blanquilla. This reef is located in the Gulf of Mexico, in an area of suboptimal environmental conditions for coral growth. M. faveolata had a significantly higher skeletal extension rate than M. annularis. Corals growing in Mahahual had significantly higher skeletal extension rate than those living in Chinchorro Bank. This is consistent with inshore–offshore gradients in growth rates observed by other authors in the same and other coral species. This is probably due to less favorable environmental conditions for coral growth in near shore Mahahual, where there is high hydraulic energy and high sedimentation rate. Contrary to observations of other authors, skeletal extension rate did not differ significantly between HDB- and LDB-formation periods for both species of Montastraea. Both species produced their HDB between July and September, when the seawater temperatures are seasonally higher in the Mexican Caribbean. Tissue thickness indicated that environmental conditions are more favorable for coral health and performance during the HDB-formation period. Mitotic index data support the idea that zooxanthellae have competitive advantages for carbon over the host during the LDB-formation period. So, corals, during the LDB-formation period, with less favorable environmental conditions for coral performance and at a disadvantage for carbon with zooxanthellae, add new skeleton with little or no opportunity for thickening the existing one. This results in an equally extended skeleton with lower density, and the stretching response of skeletal growth, proposed for M. annularis growing under harsher environmental conditions, also occurs during the LDB-formation period.Communicated by P.W. Sammarco, Chauvin  相似文献   

16.
The coral genus Porites was investigated to evaluate the use of skeletal strontium content as a recorder of seasonal and annual temperature oscillations. In the Hawaiian archipelago, the mean annual water temperature fluctuates by ±0.5C°, with seasonal temperature ranges of 4 to 8C°; the resolution of the Sr thermometer appears to be ±1.5C°. Of this error term, ±0.7C° is analytical, the remainder is biological. Corals from some locations yield temperatures which are consistently offset from the Sr vs temperature calibration line, suggesting genetic population differences. Analysis of cores collected in 1980 from Hawaiian Porites spp. showed no discernible long-term trends over a 100 yr period. Although absolute temperatures are poorly resolved, subannual oscillations in skeletal Sr values accurately reflect recorded seasonal temperature variations. The most useful application of the Sr thermometer is in deciphering the skeletal density band pattern. Subannual oscillations in Sr-temperature values when correlated with density values showed a consistent pattern. When the sections chosen for x-radiography closely followed the growth axis, an abrupt shift from minimum to maximum skeletal density was evident in September/October each year, followed by a gradual decrease in density. The density pattern, shown by microdensitometry, is independent of latitude or temperature range over the Hawaiian archipelago. The annual density shift coincides with high but declining water temperature and solar insolation. If low-density growth represents optimum calcification conditions, the density shift in Hawaiian Porites spp. reflects a change in conditions from optimal to suboptimal. Analyses of samples from other Indo-Pacific locations confirm the generality of this density pattern and suggest a complex relationship between density and environmental light and temperature.Hawaii Institute of Geophysics Contribution No. 1209; Hawaii Institute of Marine Biology Contribution No. 618  相似文献   

17.
Lithophaga date mussels from three species (L. lessepsiana, L. simplex and L. purpurea) were removed from their stony coral hosts in the Red sea at Eilat, Israel. Spawning, observed in the laboratory on several occasions during 1987–1988, appeared to be closely tied to lunar periods, occurring primarily during the last quarter and the new moon. Embryonic and larval development was typical of that described for other mytilids and, except for pigmentation differences, which could be discerned during embryogenesis, the developmental stages of the three species were indistinguishable. Development to the pediveliger stage took 3 to 4 wk in standard culture conditions, but raising the temperature to 27.5 °C increased the growth rate of larvae of L. lessepsiana by as much as three-fold, so that the pediveliger stage was attained in 16 d. Larvae resulting from spawning by L. simplex adults removed from the coral Astreopora myriophthalma grew significantly faster in culture than larvac from adults removed from the coral Goniastrea pectinata (comparison of slopes, p<0.05). The latter individuals showed a 6-d growth plateau at the early umbone stage. Metamorphically competent larvae were capable of delaying metamorphosis for up to 4mo, which would allow an extended period for dispersion and would increase the chance of finding a suitable substratum in the natural environment.  相似文献   

18.
This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.  相似文献   

19.
Species that are strong interactors play disproportionately important roles in the dynamics of natural ecosystems. It has been proposed that their presence is necessary for positively shaping the structure and functioning of ecosystems. We evaluated this hypothesis using the case of the world's largest parrotfish (Bolbometopon muricatum), a globally imperiled species. We used direct observation, animal tracking, and computer simulations to examine the diverse routes through which B. muricatum affects the diversity, dispersal, relative abundance, and survival of the corals that comprise the foundation of reef ecosystems. Our results suggest that this species can influence reef building corals in both positive and negative ways. Field observation and simulation outputs indicated that B. muricatum reduced the abundance of macroalgae that can outcompete corals, but they also feed directly on corals, decreasing coral abundance, diversity, and colony size. B. muricatum appeared to facilitate coral advancement by mechanically dispersing coral fragments and opening up bare space for coral settlement, but they also damaged adult corals and remobilized a large volume of potentially stressful carbonate sediment. The impacts this species has on reefs appears to be regulated in part by its abundance—the effects of B. muricatum were more intense in simulation scenarios populated with high densities of these fish. Observations conducted in regions with high and low predator (e.g., sharks) abundance generated results that are consistent with the hypothesis that these predators of B. muricatum may play a role in governing their abundance; thus, predation may modulate the intensity of the effects they have on reef dynamics. Overall our results illustrate that functionally unique and threatened species may not have universally positive impacts on ecosystems and that it may be necessary for environmental managers to consider the diverse effects of such species and the forces that mediate the strength of their influence. Efectos Positivos y Negativos de un Pez Loro Amenazado Sobre Ecosistemas Arrecifales  相似文献   

20.
Stable-isotope and growth records of coral skeletons are often used to reconstruct tropical paleoclimate, yet few surveys have systematically examined the natural variability in coral skeletal 13C, 18O and maximum linear skeletal extension (MLSE) across depth. Here, interspecific, intraspecific, and geographical variations in coral skeletal 13C, 18O, and MLSE were examined in the corals Porites compressa, P. lobata, and Montipora verrucosa grown at 1.7, 5.0, and 8.3 m depth from August 1996 to March 1997 at The Point Reef and Patch Reef #41 field sites in Kaneohe Bay, Hawaii. Coral skeletal 13C values significantly decreased with depth and differed between species, but did not vary between field sites. 18O values were not significantly different across depth within a species, but did differ among species and field sites. High-resolution analysis of the intra-annual variation in skeletal 13C and 18O in P. compressa at 2.0 m depth confirms that these isotopes reflect changes in solar irradiance and temperature, respectively. Changes in MLSE across depth were consistent within, but highly variable among, species. Peak MLSE occurred at 1.7, 5.0, and 8.3 m for P. lobata, P. compressa, and M. verrucosa, respectively. Such interspecific variation in MLSE patterns may be attributable to one or more of the following: increases in zooplankton in the diet, changes in metabolic processes, or changes in growth form with depth. Overall, these results imply that natural inter- and intraspecific variability in coral skeletal 13C, 18O, and MLSE should be considered when interpreting and comparing coral-based tropical paleoclimate data from various coral species, depths, and field sites. Received: 6 October 1998 / Accepted: 8 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号