首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Within aquatic communities, individuals may gain survival benefits by responding to the chemical alarm signals of heterospecific prey guild members. Piscivorous individuals, however, should be selected to use such chemical signals as foraging cues. A variety of centrarchid species, such as largemouth bass (Micropterus salmoides), undergo an ontogenetic change in their response to the chemical alarm cues of heterospecific guild members, switching from antipredator to foraging responses. This ontogenetic shift should occur when potential foraging benefits outweigh any survival advantage gained from an antipredator response. To test this model, we exposed juvenile green sunfish (Lepomis cyanellus) to the skin extracts of conspecifics, a heterospecific prey guild member (finescale dace, Phoxinus neogeaus) or an allopatric heterospecific (green swordtails, Xiphophorus helleri). Juvenile sunfish exhibited a significant positive relationship between standard length and time spent moving and a significant negative relationship between length and time in a spine-erect posture, when exposed to dace skin extract, but not to either swordtail or conspecific skin extracts. Smaller individuals of less than 90 mm standard length (SL) decreased time moving and increased time with spines erect (indicating an antipredator response) while larger individuals (>90 mm SL) increased time moving and decreased time with spines erect (indicating a foraging response), when exposed to dace skin extract. Conversely, juvenile sunfish, regardless of size tested, always exhibited an antipredator response to conspecific skin extract. Sunfish exhibited no change in behaviour in response to swordtail skin extracts. These data further support our model of a threat sensitive trade-off in the response to chemical alarm signals by juvenile centrarchids.  相似文献   

2.
Summary. While the response to damage-released chemical alarm cues within the superorder Ostariophysi appears to be highly conserved across species, it is generally observed that the intensity of response to heterospecific alarm cues decreases with increasing phylogenetic distance. Recent studies have demonstrated that purine-N-oxides function as chemical alarm cues within Ostariophyian fishes and that the nitrogen-oxide functional group is conserved as the chief molecular trigger. According to the purine-ratio hypothesis, these cross-species differences may be due to the relative proportion of different carrier compounds associated with the nitrogen-oxide molecular trigger. To test this hypothesis, we exposed glowlight tetras (Hemigrammus erythrozonus, Characidae, Ostariophysi) to one of five synthetic stimuli (hypoxanthine-3-N-oxide (H3NO), pyridine-N-oxide (PNO) or mixed stimuli of 75 % H3NO-25 % PNO, 50 % H3NO-50 % PNO, or 25 % H3NO-75 % PNO), natural conspecific chemical alarm cue or a distilled water control. We quantified changes in shoal cohesion and vertical area use as species typical indicators of an antipredator response. As predicted, response intensity decreased as the ratio of hypoxanthine-3-N-oxide to pyridine-N-oxide decreased and the strongest response was to natural alarm cue. These results suggest that species-specific carrier compounds may account for the well-documented cross-species differences in the response to heterospecific alarm cues within phylogenetically related taxa.  相似文献   

3.
The ability to discriminate between more dangerous and less dangerous predators can have serious fitness advantages for fish juveniles. This is especially true for hatchery-reared fish young used for stocking, because their post-release mortality is often much higher than that of wild-born conspecifics. We tested whether two coexisting fish predators and their different diets induce innate behavioral responses in predator-naive Arctic charr (Salvelinus alpinus) young originating from an endangered hatchery-bred population used for re-introductions. We predicted the antipredator responses of charr to be stronger towards chemical cues of brown trout (Salmo trutta) and pikeperch (Stizostedion lucioperca) than towards odorless control water. More pronounced antipredator behavior was predicted in treatments with predators fed on charr than when their diet consisted of another sympatric salmonid, European grayling (Thymallus thymallus), or when they were food-deprived. The Arctic charr young showed strong antipredator responses in all brown trout treatments, whereas odors of the less likely predator pikeperch were avoided with conspecific diet only. Freezing was the most sensitive antipredator behavior, as it was completely absent in control treatments. We found considerable individual variation in the amount and strength of antipredator responses. Although almost half of the charr failed to show antipredator behavior towards the piscivores, those with the innate ability showed highly sensitive recognition of predator odors. Our results indicate that the innate antipredator behavior of the juvenile fish is already finely tuned to respond specifically to chemical cues from different fish predators and even their diets.Communicated by J. Krause  相似文献   

4.
Summary. Predation is a pervasive selective agent highly variable in space and time. Due to the costs associated with antipredator responses, prey would be at a selective advantage if they respond to predation threats with an intensitfy matching the threat posed by the predator. Many aquatic organisms have been shown to use chemical alarm cues present in the water to assess the level of risk in their environment. This includes mosquito larvae which show antipredator responses to conspecific alarm cues. In this study, we investigated the nature of the responses of larval mosquitoes Culex restuans to those cues. In our initial observations, we showed pond/population differences in the response intensity of C. restuans to alarm cues. In experiment 1, we showed that the response intensity to alarm cues could be increased by increasing the background level of risk in the mosquitoes’ environment (by adding salamander predators) and once turned on, the response intensity to alarm cues was likely maintained for the remainder of the mosquitoes’ aquatic life. In experiments 2 and 3, we investigated if the increase in response intensity to alarm cues was directly correlated with the level of background risk in the mosquitoes’ environment. When given increasing levels of background risk, mosquito larvae subsequently showed a graded response to conspecific alarm cues. This series of experiments demonstrates that the response intensity of larval mosquitoes to a standard concentration of alarm cues is not fixed, but rather dependent on the background level of risk in the environment. An understanding of the background level of risk is particularly important for comparing antipredator responses of prey between habitats.  相似文献   

5.
Many prey assess predation risk through predator chemical cues. Numerous studies have shown that (1) prey sometimes respond to chemical cues produced by heterospecifics and (2) that many species are capable of associative learning. This study extends this research by focusing on predation risk assessment and antipredator behavior in environments containing chemical cues produced by multiple prey species. The results show that green frog (Rana clamitans) tadpoles (1) assess risk from the chemical cue produced during predation by a heterospecific (gray tree frog, Hyla versicolor, tadpoles) and (2) can exhibit similarly strong behavioral responses to a mix of conspecific and heterospecific cues compared to conspecific cue alone, depending on their conditioning environment. I then discuss how the prey choice of the predators and the relative abundances of the prey species should influence the informational value of heterospecific cues.  相似文献   

6.
In aquatic environments, many prey rely on chemosensory information from injured (alarm cues) or stressed conspecifics (disturbance cues) to assess predation risk. Alarm cues are considered as a sign of higher risk than disturbance cues. These cues could be used by prey to learn potential new predators. In this study, we tested whether Iberian green frog tadpoles (Pelophylax perezi) exhibited antipredator responses to alarm and disturbance cues of conspecifics and whether tadpoles could associate new predators with alarm or disturbance cues. Tadpoles reduced their activity in the presence of disturbance cues, but only weakly when compared with their response to alarm cues. Also, tadpoles learned to recognize new predators from association with alarm or disturbance cues. However, the period of retention of the learned association was shorter for disturbance than alarm cues. Our results indicate that tadpoles are able to modify their antipredatory behavior according to (1) the degree of risk implied by the experimental cues (2) their previous experience of chemical cues of the predator.  相似文献   

7.
Understanding prey response to predators and their utilization of sensory cues to assess local predation risk is crucial in determining how predator avoidance strategies affect population demographics. This study examined the antipredator behaviors of two ecologically similar species of Caribbean coral reef fish, Coryphopterus glaucofraenum and Gnatholepis thompsoni, and characterized their responses to different reef predators. In laboratory assays, the two species of gobies were exposed to predator visual cues (native Nassau grouper predator vs. invasive lionfish predator), damage-released chemical cues from gobies, and combinations of these, along with appropriate controls. Behavioral responses indicate that the two prey species differ in their utilization of visual and chemical cues. Visual cues from predators were decisive for both species’ responses, demonstrating their relative importance in the sensory hierarchy, whereas damage-released cues were a source of information only for C. glaucofraenum. Both prey species could distinguish between native and invasive predators and subsequently altered their antipredator responses.  相似文献   

8.
A prerequisite for prey to show adaptive behavioural responses to predators is that the prey has the ability to recognise predators as threats. While predator recognition can be innate in many situations, learning is often essential. For many aquatic species, one common way to learn about predators is through the pairing of a novel predator odour with alarm cues released from injured conspecifics. One study with fish demonstrated that this mode of learning not only allows the prey to recognise the predatory cues as a threat, but also mediates the level of threat associated with the predator cues (i.e. threat-sensitive learning). When the prey is exposed to the novel predator with a high concentration of alarm cues, they subsequently show a high intensity of antipredator response to the predator cues alone. When exposed to the predator with a low concentration of alarm cues, they subsequently show a low-intensity response to the predator cues. Here, we investigated whether larval mosquitoes Culex restuans have the ability to learn to recognise salamanders as a threat through a single pairing of alarm cues and salamander odour and also whether they would learn to respond to salamander cues in a threat-sensitive manner. We conditioned individual mosquitoes with water or a low, medium or high concentration of crushed conspecific cues (alarm cues) paired with salamander odour. Mosquitoes exposed to salamander odour paired with alarm cues and subsequently exposed to salamander odour alone responded to the salamander as a threat. Moreover, the intensity of antipredator response displayed during the conditioning phase matched the response intensity during the testing phase. This is the first demonstration of threat-sensitive learning in an aquatic invertebrate.  相似文献   

9.
How individuals assess, respond and subsequently learn from alarm cues is crucial to their survival and future fitness. Yet this information is not constant through time; many individuals are exposed to different predators throughout their life as they outgrow some predators or move to habitats containing different predators. To maximise overall fitness, individuals should discriminate between different cues and respond and learn from only those that are relevant to their current ontogenetic stage. We tested whether juvenile spiny chromis, Acanthochromis polyacanthus, could distinguish between chemical alarm cues from conspecific donors of different ontogenetic stages and whether the cue ontogenetic stage of the cue donor affected the efficacy of learning about predators. Juveniles displayed a significant antipredator response when conditioned with juvenile chemical alarm cues paired with predator odour but failed to respond when conditioned with predator odour paired with either adult alarm cues or with saltwater. Subsequently, individuals only recognised the predator odour alone as a threat when conditioned with juvenile alarm cues. This demonstrates that prey may be highly specific in how they use information from conspecific alarm cues, selectively responding to and learning from only those cues that are relevant to their developmental stage.  相似文献   

10.
The antipredator behaviour of prey organisms is shaped by a series of threat-sensitive trade-offs between the benefits associated with successful predator avoidance and a suite of other fitness-related behaviours such as foraging, mating and territorial defence. Recent research has shown that the overall intensity of antipredator response and the pattern of threat-sensitive trade-offs are influenced by current conditions, including variability in predation risk over a period of days to weeks. In this study, we tested the hypothesis that long-term predation pressure will likewise have shaped the nature of the threat-sensitive antipredator behaviour of wild-caught Trinidadian guppies (Poecilia reticulata). Female guppies were collected from two populations that have evolved under high- and low-predation pressure, respectively, in the Aripo River, Northern Mountain Range, Trinidad. Under laboratory conditions, we exposed shoals of three guppies to varying concentrations of conspecific damage-released chemical alarm cues. Lower Aripo (high-predation) guppies exhibited the strongest antipredator response when exposed to the highest alarm cue concentration and a graded decline in response intensity with decreasing concentrations of alarm cue. Upper Aripo (low-predation) guppies, however, exhibited a nongraded (hypersensitive) response pattern. Our results suggest that long-term predation pressure shapes not only the overall intensity of antipredator responses of Trinidadian guppies but also their threat-sensitive behavioural response patterns.  相似文献   

11.
Prey animals often have to face a dynamic tradeoff between the costs of antipredator behavior and the benefits of other fitness-related activities such as foraging and reproduction. According to the threat-sensitive predator avoidance hypothesis, prey animals should match the intensity of their antipredator behavior to the degree of immediate threat posed by the predator. Moreover, longer-term temporal variability in predation risk (over days to weeks) can shape the intensity of antipredator behavior. According to the risk allocation hypothesis, changing the background level of risk for several days is often enough to change the response intensity of the prey to a given stimulus. As the background level of risk increases, the response intensity of the prey decreases. In this study, we tested for possible interactions between immediate threat-sensitive responses to varying levels of current perceived risk and temporal variability in background risk experienced over the past 3 days. Juvenile convict cichlids were preexposed to either low or high frequencies of predation risk (using conspecific chemical alarm cues) for 3 days and were then tested for a response to one of five concentrations (100, 50, 25, 12.5%, or a distilled water control). According to the threat-sensitive predator avoidance hypothesis, we found greater intensity responses to greater concentrations of alarm cues. Moreover, in accordance with the risk allocation hypothesis, we found that cichlids previously exposed to the high background level of risk exhibited a lower overall intensity response to each alarm cue concentration than those exposed to the low background level of risk. It is interesting to note that we found that the background level of risk over the past 3 days influenced the threshold level of response to varying concentrations of alarm cues. Indeed, the minimum stimulus concentration that evoked a behavioral response was lower for fish exposed to high background levels of predation than those exposed to low background levels of predation. These results illustrate a remarkable interplay between immediate (current) risk and background risk in shaping the intensity of antipredator responses.  相似文献   

12.
Mutual recognition is the product of species coexistence, and has direct effects on survival and reproduction of animals. Bats are able to discriminate between sympatric different heterospecifics based on their echolocation calls, which has been shown both in free-flying and captive bats. To date, however, the factors that may determine the behavioral responses of bats to echolocation calls from sympatric heterospecifics have rarely been tested, especially under well-controlled conditions in captive bats. Hence, we aimed at tackling this question by performing playback experiments (habituation–dishabituation) with three horseshoe bat species within the constant-frequency bat guild, which included big-eared horseshoe bats (Rhinolophus macrotis), Blyth’s horseshoe bats (Rhinolophus lepidus), and Chinese horseshoe bats (Rhinolophus sinicus). We studied the behavioral responses of these three species to echolocation calls of conspecifics, to other two species, and to another heterospecifics bat, Stoliczka’s trident bat (Asellisus stoliczkanus), which also belongs to this guild. We found that the three rhinolophid species displayed a series of distinct behaviors to heterospecific echolocation but few to conspecific calls after habituation, suggesting that they may have been able to discriminate sympatric heterospecific echolocation calls from those of conspecifics. Interestingly, the behavioral responses to heterospecific calls were positively correlated with the interspecific overlap index in trophic niche, whereas call design had only a minor effect. This implies that the behavioral responses of these bats to heterospecific echolocation calls may be related to the degree of interspecific food competition.  相似文献   

13.
Summary. Many aquatic species use chemosensory information to assess predation risk. The cues used in such risk assessment can come either from the predator (predator odour) or from injured prey (alarm cues). The information conveyed through chemicals may, however, be inaccurate both spatially and temporally, as chemicals may persist in the environment long after the predator is gone. Thus, the level of accuracy of the cues for risk assessment may depend on the persistency of the chemicals in the habitat. Here, we investigated the persistency of alarm cues of a larval amphibian, the woodfrog (Rana sylvatica) in a ephemeral pond, their natural habitat. We introduced either alarm cues or control water in enclosed sleeves (~10 L) installed in the pond. The sleeve water was then sampled after 5 min and every two hours for eight hours. We used the behavioural response of woodfrog tadpoles to alarm cues as a bioassay to assess how long the alarm cues persisted in the environment. We found that tadpoles responded with an antipredator response to the pond water containing alarm cues 5 min after the injection of the cues in the sleeves but did not respond to that same pond water after two hours. Our results indicate that biodegradation and/or photodegradation of alarm cues in natural habitats might occur relatively quickly as the loss of a response to the cues in our experiment was independent of a dilution effect. This contrasts with previous laboratory results indicating that chemicals may be active after several hours.  相似文献   

14.
Summary. Many aquatic prey are known to use chemical alarm cues to assess their risk of predation. In fishes, such alarm cues can be released either through damage of the epidermis during a predatory attack (capture-released) or through release from the predator feces (diet-released). In our study, we compared the importance of capture- versus diet-released alarm cues in risk assessment by fathead minnows (Pimephales promelas) that were na?ve to fish predators. We utilized two different fish predators: a specialized piscivore, the northern pike (Esox lucius) and a generalist predator, the brook trout (Salvelinus fontinalis). Handling time of pike consuming minnows was much shorter than for trout consuming minnows, likely resulting in less epidermal damage to the minnows during attacks by pike. In accordance with this, minnows showed a less intense antipredator response to capture-released cues from pike than capture-released cues from trout. This represents a paradox in risk assessment for the minnows as they respond to the specialized piscivore, the more dangerous predator, with a less intense antipredator response. In contrast, the minnows showed a stronger antipredator response to the specialized piscivore than to the generalist when given diet cues. This work highlights the need for researchers to carefully consider the nature of the information available to prey in risk assessment.  相似文献   

15.
Individuals living in social groups are predicted to live under unequal predation risk due to their spatial location within the group. Previous work has indicated that individuals located at the edge of groups have higher “domains of danger”, thus are more likely to engage in vigilance or antipredator behavior. We studied the determinants of vigilance behavior in two groups of ring-tailed coatis in Iguazu National Park, Argentina. In addition to the expected pattern that coatis were more vigilant at the edge of the group, we found that individuals were particularly vigilant at the front edge of the group. This pattern conforms to predictions of differing predation risk caused by sit-and-wait predators with respect to mobile animal groups. In addition, coatis exhibited less vigilance when the number of neighbors within 5 m and group size increased. Of the three spatial variables tested, within-group spatial position was the most important predictor variable determining vigilance levels. These results confirm that spatial position has major effects on vigilance behavior, and that group directionality is an important factor which should be taken into account when measuring vigilance behavior. Coatis were more vigilant when juveniles less than 6 months old were in the groups. The presence of these young juveniles also affected the relationship between alarm response and vigilance levels. Coatis were more vigilant after strong alarm reactions, but only when young juveniles were not present in the groups. This may indicate that coatis give differential responses to alarm calls depending on the age of the caller. A comparison of antipredator vigilance between coatis and sympatric capuchin monkeys is consistent with the hypothesis that terrestriality leads to higher perceive predation risk for coatis.  相似文献   

16.
Following disturbance, some aquatic prey species release chemicals that act as a warning cue and increase vigilance in nearby conspecifics. Such disturbance cues evoke consistent low intensity anti-predator responses. In contrast, alarm cues from injured conspecifics often evoke stronger intensity responses in prey animals. In this study, we test the sensory complement hypothesis, which suggests that multiple cues act in an additive or synergistic fashion to provide additional information for risk assessment by prey. In the first experiment, we showed that juvenile rainbow trout pre-exposed to disturbance cues respond to a given concentration of damage-released alarm cues with a higher intensity of response than the trout that were pre-exposed to cues from undisturbed conspecifics. The two cues acted in an additive fashion. In the second experiment, we demonstrated that disturbance cues alone were not enough to elicit a conditioned response to the odour of a novel predator. We also showed that while disturbance cues elicit an increase in the response of trout to alarm cues, this increase does not translate into a stronger learned response to the predator when the predator odour is paired with alarm cues. Future studies should take into account sensory complementation to avoid underestimating the responses of prey to predators.  相似文献   

17.
Summary. Aphid colonies can reach high levels of abundance but last for short periods of time. The larvae of aphidophagous ladybirds (Coleoptera: Coccinellidae) that feed on these colonies might therefore suffer from starvation, which favours the occurrence of cannibalism and intraguild predation. Thus, the assessment of patch quality becomes crucial and it has been shown that female ladybirds refrain from laying eggs in the presence of an oviposition deterring semiochemical deposited by their larvae. Adalia bipunctata (L.), Adalia decempunctata (L.) and Coccinella septempunctata L. are 3 sympatric species of ladybirds, which can co-occur in aphid colonies. As a consequence, their eggs and larvae are under threat, not only from cannibalism but also intraguild predation. Females should, therefore, also use the tracks deposited by heterospecific larvae to assess the quality of aphid colonies as oviposition sites. The expectation is that: 1- the strength of the reaction to each other’s larval tracks should be correlated with percentage habitat overlap and that 2- the reaction to conspecific larval tracks should be stronger than to heterospecific tracks. In order to test these hypotheses, females’ oviposition behaviour was analysed and a chemical analysis of the tracks of their larvae undertaken. The results show that oviposition behaviour is not related to habitat overlap. Both species of Adalia react to tracks of their own larvae and those of C. septempunctata, but A. decempunctata reacted more strongly than A. bipunctata. C. septempunctata reacted very slightly to its own tracks but not to those of either species of Adalia. The larval tracks are mainly composed of alkanes. Those of the two species of Adalia are qualitatively 100% similar and 60% so when the quantitative results are compared. They are, however, only 24–29% similar to those of Coccinella septempunctata.  相似文献   

18.
Experiments reported here were carried out to investigate the use of acoustic cues by palmate newts (Lissotriton helveticus) for orientation and to study whether this behavior is learned, or whether two populations of palmate newts that cohabit with different frog species (Iberian green frog, Rana perezi, and European common brown frog, Rana temporaria) show different phonotactic preferences. The orientation tests consisted of presenting a control stimulus (white noise), a sympatric acoustic stimulus (calls of R. perezi or R. temporaria, depending on the origin of newts), or an allopatric stimulus (calls of natterjack toads, Bufo calamita, or R. perezi). Newts were released in a circular arena, while the acoustic stimuli were presented outside of the circular arena in four different compass orientation directions (0, 90, 180 and 270°). In this study, we show that L. helveticus performed positive phonotaxis toward the calls of R. perezi only when both species shared habitat, orienting randomly when R. perezi was absent from the newt’s natal population. Newts from both populations oriented randomly when exposed to the allopatric and control acoustic stimuli. These results suggest, for the first time, that recognition of the sympatric heterospecific calls could be learned. However, newts sharing the breeding pond with a population of R. temporaria oriented randomly when exposed to the calls of this species. The fact that the breeding seasons of R. temporaria and L. helveticus do not overlap in time does not allow the use of R. temporaria calls as a guidance mechanism for migrating individuals of L. helveticus.  相似文献   

19.
Numerous studies have examined how predator diets influence prey responses to predation risk, but the role predator diet plays in modulating prey responses remains equivocal. We reviewed 405 predator–prey studies in 109 published articles that investigated changes in prey responses when predators consumed different prey items. In 54 % of reviewed studies, prey responses were influenced by predator diet. The value of responding based on a predator’s recent diet increased when predators specialized more strongly on particular prey species, which may create patterns in diet cue use among prey depending upon whether they are preyed upon by generalist or specialist predators. Further, prey can alleviate costs or accrue greater benefits using diet cues as secondary sources of information to fine tune responses to predators and to learn novel risk cues from exotic predators or alarm cues from sympatric prey species. However, the ability to draw broad conclusions regarding use of predator diet cues by prey was limited by a lack of research identifying molecular structures of the chemicals that mediate these interactions. Conclusions are also limited by a narrow research focus. Seventy percent of reviewed studies were performed in freshwater systems, with a limited range of model predator–prey systems, and 98 % of reviewed studies were performed in laboratory settings. Besides identifying the molecules prey use to detect predators, future studies should strive to manipulate different aspects of prey responses to predator diet across a broader range of predator–prey species, particularly in marine and terrestrial systems, and to expand studies into the field.  相似文献   

20.
Sympatric species sharing requirements are competitors, but recent evidence suggests that heterospecifics may also be used as a source of information. The heterospecific habitat copying hypothesis proposes that individuals of one species might use information inadvertently produced by the breeding performance of individuals of other species to assess habitat quality whenever the two species share needs. In this study, we provide the first experimental test of this hypothesis by examining whether the manipulated reproductive success of blue tits (Cyanistes caeruleus) is used as heterospecific inadvertent social information (ISI) in breeding-habitat selection by sympatric great tits (Parus major). The reproductive success of blue tits was manipulated 1year at the scale of patches by transferring nestlings from decreased to increased patches. No evidence was found of great tits using the reproductive success of blue tits as a source of heterospecific ISI. However, dispersal decisions by adult great tits correlated with information on con- and heterospecific densities, which constitute other sources of ISI. As density and breeding performance are tightly intertwined forms of information, the difficulty in distinguishing between them might lead great tits to use heterospecific ISI more in the form of density than breeding performance when making dispersal decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号