首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用常规气象资料和NCEP再分析客观物理量场、卫星云图、多普勒雷达回波产品资料,对2007年7月13日发生在江汉平原中北部的暴雨过程进行了诊断分析。结果表明,(1)高空低槽东移是影响此次强降水过程的主要大尺度环流背景;(2)低层低涡暖切变和低空急流是暴雨的直接影响系统;(3)有利的热力水汽条件和动力条件是强降水产生和维持的机制;(4)卫星云图上“人”字型、“V”字型云系和多普勒速度资料上的“逆风区”、风切变可作为判断强降水落区落点的依据。  相似文献   

2.
四川盆地极端暴雨水汽输送特征分析   总被引:1,自引:0,他引:1  
论文利用1961—2015年四川盆地104个国家气象站资料和同期NCEP资料,筛选四川盆地极端暴雨过程并进行分型,引入拉格朗日混合单粒子轨道模型(HYSPLIT 4),定量分析了不同类型极端暴雨过程850 hPa和700 hPa上的水汽输送特征。结果表明:1)四川盆地全盆移动型和盆西型极端暴雨不同层次上的水汽输送轨迹有所不同。850 hPa上全盆移动型水汽输送轨迹主要有4条,而盆西型主要有5条;700 hPa上全盆移动型和盆西型水汽轨迹都主要有3条。2)不同后向追踪时间,两类极端暴雨过程850 hPa的水汽来源大值区有所不同。后向追踪1 d,两类极端暴雨过程的水汽来源大值区都出现在西南地区东部;后向追踪3 d,全盆移动型的水汽大值区出现在两广交界处以及北部湾附近,而盆西型的水汽大值区出现在湖北西部至两广交界处以及印度半岛北部;后向追踪9 d,两类极端暴雨过程相同的水汽来源大值区为斯里兰卡岛附近的印度洋洋面,此外,全盆移动型的另一个大值区为菲律宾岛附近的太平洋洋面,盆西型的另一个大值区为中南半岛东部沿海。3)追踪到不同类型极端暴雨过程不同层次上的水汽源地,并定量分析了不同水汽源地的贡献率。850 hPa上全盆移动型主要水汽源地有3个:阿拉伯海-孟加拉湾地区、西太平洋、东亚大陆及临海。盆西型主要水汽源地也有3个:南海、孟加拉湾、中国东部及沿海;700 hPa上全盆移动型水汽源地有3个:阿拉伯海、孟加拉湾-南海、东海。盆西型主要水汽源地有2个:孟加拉湾和南海。  相似文献   

3.
利用常规观测资料和NCEP再分析资料,对2012年8月20日郑州暴雨过程进行了诊断分析,由于此次暴雨过程是由两次不同类型的降水叠加产生的,重点分析了2种不同类型降水的各项物理量场的分布特点、数值变化,以及它们与降水落区、强度的关系。结果发现:此次暴雨过程是由副高、高空槽和地面弱冷空气共同影响所致。水汽辐合区与强降水落区相对应,第一时段的水汽辐合区主要在中低层(700 h Pa附近),第二时段的水汽辐合主要是低层(900 h Pa附近);假相当位温θse与强降水落区相对应,第一时段的强降水落区与θse高能舌走向一致,第二时段的强降水落区位于能量锋区的东南侧;强降水过程中低层正的垂直螺旋度演变趋势与强降水的落区和降水强度变化有较好的对应关系。垂直螺旋度中低层正中心、高层负中心,这种上下耦合的结构特点对系统自身的发展及暴雨的维持十分有利。  相似文献   

4.
利用常规观测资料、NCEP1°×1°的6h再分析资料,对2014年2月18日贵州大范围强降雪天气的天气形势和物理场进行分析,着重探讨了强降雪时段初期(18日02时)主要积雪区(26°~28°N)的物理量配置情况。结果表明:此次降雪过程是在500 h Pa阶梯槽、700 h Pa切变线和中低空强西南急流以及低层冷空气有效配合下产生的。强降雪主要出现在18日02时至08时,贵州中部(26°~28°N)为主要积雪区,暴雪站分布于27°N线上,强降雪时段各物理量场显示其强度中心皆位于27°N附近,主要积雪区(26°~28°N)物理量配置呈现出:深厚的冷平流(中心值≤-80×10-5℃·s-1);低层有不稳定层结;700 h Pa水汽通量高值区(中心值≥18 g·h Pa-1·cm-1·s-1)、比湿大值区(中心值≥7 g/kg)和高能区(θse中心值≥330 K),低层水汽辐合强烈(中心值≤-4×10-7g·cm-2·h Pa-1·s-1);高层辐散(中心值≥8×10-5·s-1)大于中低层辐合(中心值≤-6×10-5·s-1);上升运动强烈且深厚(中心值≤-1.2×10-2h Pa·s-1);湿层深厚(450 h Pa以下为湿度值≥92%)。  相似文献   

5.
利用NCEP/NCAR逐日再分析资料对黑河流域的水汽输送和收支特征进行了计算分析,结果表明:西风环流使得源于大西洋和北冰洋的水汽成为黑河流域空中水汽的主要来源,流域内水汽输送以自西向东的纬向输送为主,东边界输出强度强于西边界输入强度,纬向净输入量为负;经向输送为自北向南且在强度上不及纬向输送,北边界输入强度强于南边界输出强度,经向净输入量为正。700 hPa气层流域南部的水汽辐合辐散特征随季节变化显著,冬季为水汽辐散区,夏季为水汽辐合区;流域北部没有明显的水汽辐合辐散特征。全流域多年平均水汽输入量为997.3 km3,输出量为1 046.1 km3,净输入量-48.8 km3,20世纪60年代中期以后流域水汽净输入量呈现增加趋势。黑河流域北部荒漠区年内各季均为水汽输出期,中低层大气(地面~500 hPa)为主要的水汽输出层;南部山区年内6-9月为水汽输入期,低层大气(地面~700 hPa)为水汽输入层,中高层大气(700~300 hPa)为水汽输出层。据大气水平衡原理,黑河流域多年平均蒸发量约为84 km3。  相似文献   

6.
利用绝热、无摩擦大气湿位涡守恒理论和常规的地面观测资料、NCEP再分析资料(水平分辨率1°×1°),对山东省西北部2012年7月30日-8月1日的一次持续性暴雨过程的湿位涡场进行了诊断和分析。结果表明,这是一次副高边缘低涡切变类暴雨天气过程,500 hPa副热带高压和地面倒槽的稳定为鲁西北地区产生持续性暴雨提供了必要的环流条件;暴雨产生在θe线陡立密集区附近,θe线陡立密集区附近对流稳定度较小,有利于倾斜涡度发展;暴雨的发生发展与湿位涡的时空演变有很好的对应关系,湿位涡"正负区叠加"的配置是低涡暴雨发展的有利形势,暴雨区位于850 hPa上MPV1和MPV2的正负值过渡的零值区附近。  相似文献   

7.
2014年3月28-29日,龙岩市部分县市连续遭受冰雹、雷雨大风等强对流天气袭击,文中利用高空、地面观测资料、雷达观测资料等,对28日和29日过程的不同特征进行了对比分析,结果表明:(1)28日过程属低层暖平流强迫所致,在地面低压倒槽暖区中,低层风速辐合和地形作用触发了对流天气,冰雹和短时强降水明显,局地伴有强的短时大风。29日属斜压锋生类强对流过程,大风灾害范围广、局部伴有冰雹、短时强降水。(2)28日水汽条件比29日好,但是动力抬升作用明显比29日差。28日湿层明显比29日厚,更有利于短时强降水;29日深层垂直风切变比28日大,更有利于大风的形成。(3)28日的回波特征为超级单体,有明显的超级单体特征,而29日的对流天气是在系统性的飑线天气下产生的,组织性较强,强对流单体在对流带中发展。  相似文献   

8.
利用2014-2018年环保部空气污染监测资料以及同期NCEP/NCAR再分析资料,统计分析了冬季长三角地区强霾污染过程中大尺度环流背景场及气象要素对强霾污染的影响.结果表明:2014-2018年冬季长三角地区共发生5次强霾污染过程,每年冬季的12月和1月是强霾污染事件发生的高频时期.当大气中相对湿度维持在较高的水平并且维持较小的风速时,更有利于污染物的累积从而导致强霾污染事件的发生.雾霾天气的发生发展与大气环流有着密切联系,在强霾污染过程发生初期,污染物大多伴随冷空气由北向南输送至长三角地区,对流层中层500 hPa的大尺度环流形势多以纬向环流为主.严重污染发生时,长三角地区受平直西风气流影响,对流层低层850 hPa等压线较为稀疏,长三角地区受均压场或高压控制频繁,稳定的大气层结使污染物更易在近地层累积,随后大风伴随冷锋过境将污染物快速清洁导致PM2.5浓度迅速降低.  相似文献   

9.
利用2017年1月—2019年11月龙凤山大气本底站一氧化碳(CO)连续观测资料和NOAA再分析资料,对东北平原地区大气CO浓度季节变化及其排放源特征进行研究.结果表明:龙凤山站CO日变化规律具有季节性差异,春、秋和冬季CO浓度均在午后13:00—14:00出现最低值,秋和冬季19:00出现峰值,春季2:00出现最峰值,冬季CO浓度日平均最大,日振幅最大.夏季CO日变化不同于其他季节,在8:00—13:00维持较高值,在16:00—次日04:00维持较低,峰值出现在08:00,谷值出现在00:00.龙凤山站CO浓度具有明显的周期性季节变化和波动下降趋势,呈现出冬季高夏季低的特点,最高值出现在1月,最低值出现在6月,月平均浓度明显高于青藏高原地区浓度水平,全年CO月均值振幅为134.8×10-9 ± 2.5×10-9(物质的量分数,下同).在春、夏和秋季西南方向地面风能够明显抬升观测CO浓度,冬季西北方向地面风能够明显抬升观测CO浓度.后向轨迹聚类、浓度权重轨迹分析(CWT)以及地面风结果分析表明:SSW-SW-WSW扇区内的城市交通及工业等人为排放是龙凤山站的CO潜在源区,此外,冬季的NW-NNW-N扇区的短距离输送也是龙凤山站的CO潜在源区.  相似文献   

10.
基于GSI(网格点统计插值)同化系统和WRF-Chem模式,利用高分辨率的气象自动站观测资料和天气雷达资料进行同化和模拟预报,针对2017年11月4~5日发生在我国京津冀地区的一次污染过程,对比研究了气象资料同化对PM2.5模拟效果的影响.结果表明,WRF-Chem模式能较为准确地预报出北京-石家庄-邯郸的污染带分布和演变,低层风场辐合是污染带形成的主要气象因素;无同化的控制试验由于地层风场辐合较强,高估了污染带上的PM2.5浓度,同化试验减小了低层的风场辐合,同时增高了地面温度并抬升了边界层高度,从而降低了污染带上PM2.5的浓度;预报检验分析表明,同化试验的预报效果整体好于控制试验,0~36h的平均BIAS(标准偏差)和RMSE(均方根误差)分别降低了7.55和5.42μg/m3,MFB(平均相对偏差)和MFE(平均相对误差)分别降低了28.8%和9.4%,同化试验在预报的第10~30h时段上的改善效果最为显著.  相似文献   

11.
利用1981~2016年四川盆地102个气象观测站逐日霾日观测资料,对四川盆地持续霾事件(定义为连续3d及以上有烟幕或霾发生的天气)的时空分布特征、变化趋势进行分析,然后对冬季霾事件环流场特征进行研究.结果表明:1981~2016年四川盆地持续霾事件的年平均日数呈增加趋势,持续霾事件日数占霾总日数的百分比与霾总日数增加趋势较为一致,霾总日数的增加主要是由持续霾事件的增加引起的.四川盆地持续霾事件的空间分布不均匀,与霾日数的大值区的分布较为一致,主要集中在川东北城市群、成都平原城市群以及川南城市群.持续霾事件多发区的范围在1981~2010年呈年代际增大,在2011~2016年范围减少显著.通过分析盆地冬季霾事件的环流场发现,霾事件偏多(少)年时段,四川盆地处于暖(冷)高(低)压大值区域,乌拉尔山阻塞高压偏弱(强),东亚大槽偏弱(强),盆地上空为一定程度的辐合(辐散),存在(不存在)明显逆温结构,垂直上升运动弱(强),这些条件均有利于污染物颗粒聚集在浅薄的边界层内(利于污染物的扩散),造成霾天气的维持(消散).  相似文献   

12.
1980—2009年三峡库区空中水资源变化特征   总被引:6,自引:5,他引:1  
利用1980—2009年三峡库区及周边15个气象探空站的高空资料,分析了三峡库区空中水资源的变化特征,结果表明:三峡库区上空整层水汽含量分布从东北到西南逐渐增加。三峡库区的水汽主要来自西南水汽输送,夏季西南风水汽输送强度最大。三峡库区上空水汽多以辐合为主,尤其在库区西北部和东南部的辐合特征更为明显。三峡库区的水汽主要从南边界流入,而主要从东边界流出。三峡库区各月的净水汽通量都为正值,呈单峰型变化,在7月达到最大值。近30 a,三峡库区净水汽通量经历了明显的先上升后下降的抛物线型年代际变化,春季和冬季的平均净水汽通量整体呈减少趋势,而夏季、 秋季和年平均的净水汽通量呈增加趋势。  相似文献   

13.
2013年1月河北省中南部严重污染的气象条件及成因分析   总被引:22,自引:2,他引:22  
年1月河北省中南部出现了长时间、大范围的雾霾天气,大气污染严重. 利用河北省AQI(逐日空气质量指数)、气象常规观测数据及NCEP(美国国家环境预报中心)1°×1°格距再分析资料,对此次严重污染事件的气象条件、大气环境背景和形成机制进行了研究. 结果表明:①2013年1月河北省中南部地面气象要素表现异常,与历史同期相比,平均气温低1~2℃、相对湿度高15%以上、日照时数少40%以上、降水日数多但量级小. 地面风力较小且多风向、风速的辐合线,地面散度场上河北省中南部为明显的辐合区,致使水汽和污染物汇聚不易扩散,导致雾霾天气异常偏多,大气污染严重. ②边界层高湿区中丰富的水汽与污染物互为载体,强逆温层结、大气低层的干暖盖、边界层下沉运动等均使水汽和污染物存留在近地层且不易向高空扩散;同时,稳定的大气环流形势为雾霾天气和严重污染提供了有利的大气环境场. ③河北省中南部特殊的地理条件也是雾霾和污染持续的一个重要原因. 低空稳定的偏西气流越过太行山后在山麓东侧下沉,在华北平原地区易形成地面辐合线,从而加剧了近地层水汽和污染物的汇聚.   相似文献   

14.
基于江西景德镇温室气体站2017年12月~2018年11月筛分获得的CH4及CO大气本底和污染浓度数据,对大气CH4和CO浓度季节变化及其排放源特征进行研究,结果表明:大气CH4和CO本底浓度季节变化特征与浙江临安本底站类似,即夏季低而冬季高,而夏季江西地区水稻田和湿地排放导致CH4污染浓度显著抬升,相比本底浓度抬升幅度可达133.9×10-9,冬季受西北部地区取暖排放的区域输送的影响,1月CO污染平均浓度较本底浓度抬升达227.2×10-9.基于本底数据及污染数据,结合后向轨迹模型分析发现景德镇站大气CO潜在排放源主要分布在湖北东南部(四季)、安徽(秋冬季)、山东中部(秋季)、长江三角洲上海及杭州(夏秋季)、湖南东部和江西地区(冬季)等区域,其中冬季湖南东部和江西地区贡献率达53.7%,CH4排放源主要集中在江西地区(夏季)、长江三角洲杭州、南京及安徽南部覆盖区域(夏季)、湖北东南部(夏秋季)以及安徽(秋季)、山东中部(秋季)等区域,夏季南京、杭州及安徽南部覆盖区域的CH4排放对景德镇站CH4浓度抬升的贡献率达到69.5%.大气CH4及CO呈现较好的相关性,冬季其相关系数可达0.86,受CH4和CO源汇季节变化影响,CH4/CO排放比呈现冬季低值(0.31)、夏季高值(1.06).  相似文献   

15.
2014—2016年四川盆地重污染大气环流形势特征分析   总被引:5,自引:0,他引:5  
利用2014—2016年四川盆地7个主要城市国家环境空气监测子站资料,结合2015—2016年MICAPS常规气象数据、NECP和ERA Interim再分析资料,统计分析四川盆地细颗粒物(PM2.5)浓度时间分布特征及重污染期间的气象要素和环流背景.结果发现,2014—2016年四川盆地大气重污染主要发生在冬季,重污染日数分别为41、30和16 d,呈逐年降低的趋势.大气重污染期间,温度廓线出现多层逆温,逆温层大多出现在近地面925 hPa以下和700~600 hPa之间.四川盆地大气重污染主要对应两种环流形势,一种为500 hPa高空盛行西风气流,850 hPa高空等值线稀疏,另一种为四川盆地受到500 hPa高空槽后西北气流控制,地面为弱高压.以上两种环流形势下,四川盆地850 hPa高空附近气压梯度小,污染物不易扩散,导致重污染天气发生.本研究结论可为四川盆地大气重污染预报预警提供科学依据.  相似文献   

16.
论文基于1970—2013年西北干旱区高空和地面气象资料,采用多种统计学方法,分析了西北干旱区空中水汽含量的时空变化特征及其与降水量的关系。结果表明:1)1970—2002年,西北干旱区空中水汽含量呈显著的增加趋势,速率为0.835 mm/10 a(P<0.01),其中以夏季增速最高(1.709 mm/10 a,P<0.01);而降水效率基本稳定,仅春、冬季节略增。在空间上,1970—2002年水汽含量变化速率大小依次为北疆>南疆>河西走廊,其中冬、春季节以北疆水汽增速最大,夏、秋季节以南疆水汽增速最高。2)2003—2013年,西北干旱区水汽含量呈不显著下降趋势(-2.061 mm/10 a);而降水效率明显增加,速率为0.136%/10 a,这说明近年来空中水汽转化为降水的效率明显提升。同时,北疆降水效率增加幅度明显高于其他地区。3)西北干旱区各季节的降水效率与降水量均呈显著正相关性,而水汽含量与降水量的相关性则表现出明显的季节性差异:春季>夏季>秋季>冬季。另外,新疆降水变化与水汽含量和降水效率均呈显著正相关性,而河西走廊降水量与降水效率的关系更为密切。  相似文献   

17.
京津冀地区冬季雾霾过程频发,然而确定雾的空间分布一直是难点.本研究利用高分静止卫星Himawari-8的可见光和红外通道资料,分析2021年11月3-5日一次典型的京津冀地区雾的分布和演变过程.结果表明:(1)通过11.2μm与3.9μm通道的亮温差值(-8~-3 K)反演夜间雾的区域分布以及对应的雾顶高度,效果较好.(2)11月3-5日每天发生的雾,其类型、区域分布和演变过程都呈现不同的特征,3日清晨的雾为平流雾,覆盖范围为3 d中最大,几乎涵盖京津冀地区的平原地带;受西南水汽输送影响,北京市以南地区的雾发展较充分、持续时间最长,其中天津市北部的雾甚至在整个白天仍能维持.(3)11月4日和5日清晨均出现呈三角形区域分布的辐射雾,雾区的北缘和西缘分别因太行山和燕山山脉的阻挡形成,雾区南缘受低层风场作用位于天津市-石家庄市一线,呈平直的东北-西南走向,与非雾区界限分明;区域性静稳条件下,城市热岛效应对雾的分布和演变有重要影响.研究显示,京津冀地区冬季雾的分布和演变会受到水汽平流、低层风场、地形、热岛效应等多方面影响.  相似文献   

18.
川渝地区夏季降水异常水汽输送差异   总被引:1,自引:0,他引:1  
利用川渝地区1960—2006年34站逐月降水量资料和美国NCEP/NCAR同期逐月风场、比湿场和地面气压场资料,网格距2.5°×2.5°,采用EOF分解、区域降水指数、合成分析等方法,详细讨论了川渝地区夏季降水量多、少雨年水汽通量的纬向、经向、整层输送及水汽通量散度的差异。川渝地区夏季降水量标准化距平EOF分解结果表明把川渝地区夏季降水量作为一个整体来分析是合理的。区域降水量指数能很好地揭示出川渝地区夏季降水量的多寡。合成分析表明川渝地区夏季降水量多、少雨年水汽输送通量的纬向、经向、整层输送及水汽通量散度存在着明显差异,多雨年孟加拉湾、南海、西太平洋的水汽输送通量显著增强,水汽输送通量辐合比少雨年显著增强,为川渝地区夏季降水提供了丰沛的水汽条件,有利于川渝地区夏季降水量的异常偏多;少雨年则反之。  相似文献   

19.
2004年辽宁地区一次沙尘天气过程的动力机制分析   总被引:1,自引:2,他引:1  
利用NCEP再分析资料、气溶胶指数资料和污染物监测资料,从气候背景和环流形势入手,着重探讨了2004年4月14-16日辽宁地区的一次典型沙尘天气过程的形成动力机制.研究结果表明:2004年春季我国北方的气候背景为春季沙尘天气的发生提供了丰富的沙尘源;此次过程中,高空大槽引导极地强冷空气南下,配合低层强大的蒙古气旋构成了东北地区沙尘过程的典型天气环流形势.在起沙的动力机制方面,高低空急流的耦合加速了低层的辐合上升运动,加速了低层的辐合上升运动,高低空急流的有利配置所触发的强烈上升运动构成此次沙尘过程的主要动力机制.螺旋度上负下正的垂直分布是此次沙尘过程发生发展的重要动力机制,这是由于这种垂直结构对于沙尘过程这种中尺度天气系统而言,构成了低空辐合、高空辐散的深厚上升区,这种螺旋度的垂直分布十分有利于沙尘的发展.  相似文献   

20.
为研究徐州冬季雾-霾天气形成过程中颗粒物粒径及气溶胶光学特性的变化特征,分析了2014年12月1日~2015年2月28日徐州大气颗粒物质量浓度(PM10、PM2.5、PM1)、数浓度(0~1μm、1~2.5μm、2.5~10μm)和气溶胶光学特性等数据.结果表明:0~1μm粒径范围细颗粒物的大量增多是引发徐州冬季雾-霾天气的主要因素,徐州冬季地面风速小(静风或轻风天气),较高的大气相对湿度对雾-霾的形成和维持起着重要影响作用.持续时间较长的雾霾天气,因颗粒物吸湿增长和水汽附着,1~10μm粒径范围大气颗粒物在雾霾时段易发生沉降而减少,后随相对湿度降低雾霾转为短时间的霾天气,1~10μm颗粒物数浓度大幅上升.徐州冬季500nm波段AODtotal和AODfine mode具有相同的变化趋势,雾-霾日AODtotal和AODfine mode显著高于非霾日.AODfine mode与AODcoarse mode的比值雾-霾日亦明显高于非霾日,而且在雾-霾日Angstrom波长指数主要集中在1~1.6,表明徐州冬季雾-霾时段大气中细颗粒物为主控粒子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号