首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs.  相似文献   

2.
Research has shown that some plants respond to enhanced UV-B radiation by producing smaller and thicker leaves, by increasing the thickness of epidermis and concentration of UV-B absorbing compounds of their surface layers and activation of the antioxidant defence system. The response of high-altitude plants to UV-B radiation in controlled conditions is often less pronounced compared to low-altitude plants, which shows that the alpine timberline plants are adapted to UV-B. These plants may have a simultaneous co-tolerance for several stress factors: acclimation or adaptation to the harsh climate can also increase tolerance to UV-B radiation, and vice versa. On the other hand, alpine timberline plants of northern latitudes may be less protected against increasing UV-B radiation than plants from more southern latitudes and higher elevations due to harsh conditions and weaker preadaptation resulting from lower UV-B radiation exposure. It is evident that more long-term experimental field research is needed in order to study the interaction of climate, soil and UV-B irradiance on the timberline plants.  相似文献   

3.
Although terrestrial vegetation has been exposed to UV-B radiation and ozone over the course of evolutionary history, it is essential to view the effects on vegetation of changing levels of these factors in the context of other features of climate change, such as increasing CO(2) levels and changes in temperature and precipitation patterns. Much of our understanding of the impacts of increased UV-B and ozone levels has come from studies of the effects of each individual factor. While such information may be relevant to a wider understanding of the roles that these factors may play in climate change, experience has shown that the interactions of environmental stresses on vegetation are rarely predictable. A further limitation on the applicability of such information results from the methodologies used for exposing plants to either factor. Much of our information comes from growth chamber, greenhouse or field studies using experimental protocols that made little or no provision for the stochastic nature of the changes in UV-B and ozone levels at the earth's surface, and hence excluded the roles of repair mechanisms. As a result, our knowledge of dose-response relationships under true field conditions is both limited and fragmentary, given the wide range of sensitivities among species and cultivars. Adverse effects of increased levels of either factor on vegetation are qualitatively well established, but the quantitative relationships are far from clear. In both cases, sensitivity varies with stage of plant development. At the population and community levels, differential responses of species to either factor has been shown to result in changes in competitiveness and community structure. At the mechanistic level, ozone generally inhibits photosynthetic gas exchange under both controlled and field conditions, and although UV-B is also inhibitory in some species under controlled conditions, others appear to be indifferent, particularly in the field. Both factors affect metabolism; a common response is increased secondary metabolism leading to the accumulation of phenolic compounds that, in the case of UV-B, offer the leaf cell some protection from radiation. Virtually no information is available about the effects of simultaneous or sequential exposures. Since both increased surface UV-B and ozone exposures have spatial and temporal components, it is important to evaluate the different scenarios that may occur, bearing in mind that elevated daytime ozone levels will attenuate the UV-B reaching the surface to some extent. The experimentation needed to acquire unequivocal effects data that are relevant to field situations must therefore be carried out using technologies and protocols that focus on quantification of the interactions of UV-B and ozone themselves and their interactions with other environmental factors.  相似文献   

4.
Over the past several decades, numerous studies have been conducted on the impacts of air pollutants (air quality) on terrestrial ecosystems (crops and forests). Although ambient air is always composed of pollutant mixtures, in determining the relative air quality and its ecosystem impacts at a given geographic location and time, a predominant number of studies have shown that at the present time surface-level O(3) is the most important phytotoxic air pollutant. Within the North American Great Plains, the precursors for surface-level O(3) are mainly anthropogenic NO(x) and VOCs (volatile organic compounds). Texas and Alberta are the top regions of such emissions in the United States and Canada, respectively. This appears to be due mainly to the prevalence of natural gas and/or oil industry in the two regions and the consequent urbanization. Nevertheless, the total emissions of NO(x) and VOCs within the North American Great Plains represent only about 25-36% of the corresponding total emissions within the contiguous United States and the whole of Canada. Within the Great Plains many major crop and tree species are known to be sensitive to O(3). This sensitivity assessment, however, is based mainly on our knowledge from univariate (O(3) only) exposure-plant response studies. In the context of global climate change, in almost all similar univariate studies, elevated CO(2) concentrations have produced increases in plant biomass (both crop and tree species). The question remains as to whether this stimulation will offset any adverse effects of elevated surface O(3) concentrations. Future research must address this important issue both for the Great Plains and for all other geographic locations, taking into consideration spatial and temporal variabilities in the ambient concentrations of the two trace gases.  相似文献   

5.
Limitations and perspectives about scaling ozone impacts in trees.   总被引:7,自引:0,他引:7  
We review the need for scaling effects of ozone (O3) from juvenile to mature forest trees, identify the knowledge presently available, and discuss limitations in scaling efforts. Recent findings on O3/soil nutrient and O3/CO2 interactions from controlled experiments suggest consistent scaling patterns for physiological responses of individual leaves to whole-plant growth, carbon allocation, and water use efficiency of juvenile trees. These findings on juvenile trees are used to develop hypotheses that are relevant to scaling O3 effects to mature trees, and these hypotheses are examined with respect to existing research on differences in response to O3 between juvenile and mature trees. Scaling patterns of leaf-level physiological response to O3 have not been consistent in previous comparisons between juvenile and mature trees. We review and synthesize current understanding of factors that may cause such inconsistent scaling patterns, including tree-size related changes in environment, stomatal conductance, O3 uptake and exposure. carbon allocation to defense, repair, and compensation mechanisms, and leaf production phenology. These factors should be considered in efforts to scale O3 responses during tree ontogeny. Free-air O3 fumigation experiments of forest canopies allow direct assessments of O3 impacts on physiological processes of mature trees, and provide the opportunity to test current hypotheses about ontogenetic variation in O3 sensitivity by comparing O3 responses across tree-internal scales and ontogeny.  相似文献   

6.
Stratospheric ozone depletion, UV-B radiation and crop disease   总被引:9,自引:0,他引:9  
Ultraviolet-B radiation (UV-B: 290-315 nm) is expected to increase as the result of stratospheric ozone depletion. Within the environmental range, UV-B effects on host plants appear to be largely a function of photomorphogenic responses, while effects on fungal pathogens may include both photomorphogenesis and damage. The effects of increased UV-B on plant-pathogen interactions has been studied in only a few pathosystems, and have used a wide range of techniques, making generalisations difficult. Increased UV-B after inoculation tends to reduce disease, perhaps due to direct damage to the pathogen, although responses vary markedly between and within pathogen species. Using Septoria tritici infection of wheat as a model system, it is suggested that even in a species that is inherently sensitive to UV-B, the effects of ozone depletion in the field are likely to be small compared with the effects of variation in UV-B due to season and varying cloud. Increased UV-B before inoculation causes a range of effects in different systems, but an increase in subsequent disease is a common response, perhaps due to changes in host surface properties or chemical composition. Although it seems unlikely that most crop diseases will be greatly affected by stratospheric ozone depletion within the limits currently expected, the lack of a detailed understanding of the mechanisms by which UV-B influences plant-pathogen interactions in most pathosystems is a significant limit to such predictions.  相似文献   

7.
The United States and Canada currently use exposure-based metrics to protect vegetation from O(3). Using 5 years (1999-2003) of co-measured O(3), meteorology and growth response, we have developed exposure-based regression models that predict Populus tremuloides growth change within the North American ambient air quality context. The models comprised growing season fourth-highest daily maximum 8-h average O(3) concentration, growing degree days, and wind speed. They had high statistical significance, high goodness of fit, include 95% confidence intervals for tree growth change, and are simple to use. Averaged across a wide range of clonal sensitivity, historical 2001-2003 growth change over most of the 26 Mha P. tremuloides distribution was estimated to have ranged from no impact (0%) to strong negative impacts (-31%). With four aspen clones responding negatively (one responded positively) to O(3), the growing season fourth-highest daily maximum 8-h average O(3) concentration performed much better than growing season SUM06, AOT40 or maximum 1h average O(3) concentration metrics as a single indicator of aspen stem cross-sectional area growth.  相似文献   

8.
针对华北地区灰霾日渐严重的问题,利用1973—2012年地面气象观测数据,从冬季采暖耗能排污和平均风速变化的角度,结合Mann-Kendall法分析了气候变化背景下华北冬季灰霾相关气象因素的长时间尺度演化规律。研究表明,华北大部地区冬季平均风速明显下降,影响大气污染物稀释扩散,容易积累高浓度污染,有助于抬升灰霾发生的频率和强度;除个别地区受气候变化引发极寒事件影响、采暖度日变化趋势持平外,华北各地受长时间尺度上气候变化所致冬季增温效应影响,采暖日和采暖度日整体呈下降趋势,采暖耗能排污减少,有利于降低粉尘污染排放。因华北地区统一采用固定120 d时限的供暖制度,采暖日和采暖度日的下降并没有转化为采暖耗能排污的下降,个别城市采暖度日甚至有所上升。因华北南部及沿海站点计算得到的采暖日明显低于120 d,在这些城市根据天气条件试行灵活供暖,可能明显降低冬季采暖耗能排污,有助于消解雾霾。  相似文献   

9.
We present results from measurements by a NILU-UV Irradiance Meter of solar UV-B radiation in Lhasa, Tibet for the period from 7 July 1999 to 17 November 2002. The measured maximum UV-B dose rate was 1.50 W/m2 during the winter, and 3.96 W/m2, during the summer. The clear-sky values were below 3.00 W/m2. Comparisons between measured and calculated UV-B dose rates on clear-sky days in Lhasa show good agreement. Comparisons of UV-B radiation levels in Lhasa (Tibet), Oslo (Norway), and Dar-Es-Salaam (Tanzania) show that the UV-B dose rates during the summer in Lhasa are higher than the maximum value in Dar-Es-Salaam, which is at the sea level in the equatorial region, and 60% higher than in Oslo, which is at the sea level but 60 degrees North. We conclude that the UV-B dose rates during the summer on the Tibetan plateau are among the highest levels in habituated regions of the world. Maximum measured daily-integrated UV-B doses in Lhasa range from about 10 kJ/m2 in the winter to about 65 kJ/m2 in the summer.  相似文献   

10.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   

11.
The temperate forests of the southern hemisphere are the most likely forests to be affected by increased levels of ultraviolet-B (UVB) radiation resulting from reduced ozone. The review describes these forests and then discusses the morphological changes, physiological effects, and protection mechanisms, particularly UV absorbing compounds that result from present day and increasing UVB radiation. Possible avenues for future research are explored.  相似文献   

12.
Effects of the ultraviolet-B radiation (UV-B) on conifers: a review   总被引:3,自引:0,他引:3  
The current knowledge on conifer responses to enhanced ultraviolet-B (UV-B) radiation is mainly based on greenhouse or growth chamber experiments of one growing season in duration. However, the biomass losses observed in greenhouses do not occur in field-grown trees in their natural habitats. Moreover, the majority of the 20 conifer species studied have been 1-year-old seedlings, and no studies have been undertaken on mature trees. Fully grown needles, with their glaucous waxy surfaces and thick epidermal cells with both soluble and wall-bound UV-B screening metabolites, are well protected against UV-B radiation. However, it is not known whether these are sufficient protectants in young emerging needles or during the early spring period of high UV-B levels reflected from snow. In order to understand all the mechanisms that result in the protection of conifer needles against UV-B radiation, future research should focus on the epidermal layer, separating the waxes, cuticle and epidermal and hypodermal cells. Parallel studies should consist of wall-bound and soluble secondary metabolite analysis, antioxidant measurements and microscopic observations.  相似文献   

13.
UV-B radiation is a driving factor for the chemistry of the polluted boundary layer. It is involved in the formation of radicals and consequently influences the formation and concentration of photo-oxidants. The 3-D mesoscale photochemical Metphomod model was employed to study the effect of changes in UV-B radiation on the concentration of photo-oxidants in the boundary layer over the Swiss Plateau. The model chemistry is based on the RACM mechanism and a two-stream approximation of radiative transfer. A summer (July) and a late winter (February) episode were simulated. All simulations were replicated with relatively large changes in the prescribed total ozone. The results for an increase in UV-B radiation show increases in PAN, HNO3, and ozone at noon in NOx-rich areas and a decrease in NOx. In NOx-poor areas in summer the effect on ozone is weak and has a negative sign, the main effect being an increase in H2O2. The spatial variability of NOx concentrations in the Swiss Plateau in the summer case is such that the effect of increased UV-B radiation on ozone is spatially variable. The effect on the ozone production rate in summer is strongest positive at the surface in the NOx-rich regions in the morning and strongest negative at some altitude above ground in NOx-poor regions in the early afternoon. In the winter episode, NOx-rich conditions are found almost everywhere on the Swiss Plateau, the effect of increased UV-B radiation on the ozone production rate is positive all day long and is largest at 300 m above ground at noon. In this case, in contrast to the summer case, the increase in ozone is carried over to the next day. The model results for ozone are in good agreement with results from a case study and a time series analysis of surface ozone measurements. We estimate the effect of day-to-day changes in total ozone on surface ozone peaks to range from 4 to 6 ppb at most.  相似文献   

14.
Net photosynthesis, leaf area, biomass, and number, size and activity of nodules were examined in three leguminous plants subjected under field conditions to supplemental UV-B radiation equivalent to a 15% ozone depletion at 25 degrees N latitude. Enhanced UV-B radiation adversely affected the net photosynthetic rate, growth characteristics and nodule activity in all three species. Maximum reduction in net photosynthesis occurred in Phaseolus mungo cv. Pant U-30, whereas the greatest reduction in nitrogenase activity occurred in Vigna radiata.  相似文献   

15.
Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.  相似文献   

16.
The effects of UV radiation on the acute toxicity of retene (7-isopropyl-1-methylphenanthrene) to Daphnia magna Straus were studied. Dehydroabietic acid (DHAA) from which retene is formed in the vicinity of pulp and paper industry was also studied. Pyrene, anthracene, and phenanthrene were used as model PAH compounds. The time taken for immobilization (ET50) was monitored under biologically effective UV-B dose rates of 240, 365, 565, and 650 mW m(-2) (UV-A and visible light also present). Median effective concentrations (EC50) were determined after a 15-min UV exposure (565 mW m(-2)) followed by 24 h in the dark. Retene (10-320 microg l(-1)) was not acutely toxic in the dark. The induction of phototoxicity was in agreement with the absorption properties of the compounds (absorption peak of retene at around 300 nm). Photoinduced toxicity followed an order pyrene > anthracene > retene. Phenanthrene and DHAA were not acutely phototoxic. Accumulation of the compound in Daphnia before UV exposure was essential. Some changes in the absorption spectra of the compounds were seen after a 5-h UV irradiation (565 mW m(-2)), but none of the irradiated compounds were acutely toxic without further UV exposure. Therefore, the enhanced acute toxicity was primarily due to internal photosensitization reactions rather than photomodification. The dissolved fraction of 25% pulp and paper mill effluent reduced phototoxicity by attenuating UV radiation. The phototoxicity of retene was a function of both the exposure concentration and the UV-B dose rate, but relatively high UV-B dose rates and concentrations were needed for the acute photoinduced toxicity.  相似文献   

17.
Chapin FS  Danell K  Elmqvist T  Folke C  Fresco N 《Ambio》2007,36(7):528-533
Projected warming in Sweden and other Fennoscandian countries will probably increase growth rates of forest trees near their northern limits, increase the probability of new pest outbreaks, and foster northerly migration of both native and exotic species. The greatest challenges for sustainable forestry are to restore and enhance the ecological and socioeconomic diversity of intensively managed forested landscapes. With appropriate management, climate warming may facilitate the regeneration of this diversity. Experimental transplant gardens along latitudinal or altitudinal gradients and high-resolution maps of expected future climate could provide a scientific basis for predicting the climate response of potential migrant species. Management of corridors and assisted migration could speed the movement of appropriate species.  相似文献   

18.
Bonzongo JC  Donkor AK 《Chemosphere》2003,52(8):1263-1273
In the past two decades, a great deal of attention has been paid to the environmental fate of mercury (Hg), and this is exemplified by the growing number of international conferences devoted uniquely to Hg cycling and its impacts on ecosystem functions and life. This interest in the biogeochemistry of Hg has resulted in a significant improvement of our understanding of its impact on the environment and human health. However, both past and current research, have been primarily oriented toward the study of direct impact of anthropogenic activities on Hg cycling. Besides a few indirect effects such as the increase in Hg methylation observed in acid-rain impacted aquatic systems or the reported enhanced Hg bioaccumulation in newly flooded water reservoirs; changes in Hg transformations/fluxes that may be related to global change have received little attention. A case in point is the depletion of stratospheric ozone and the resulting increase in solar UV-radiation reaching the Earth. This review and critical discussion suggest that increasing UV-B radiation at earth's surface could have a significant and complex impact on Hg cycling including effects on Hg volatilization (photo-reduction), solubilization (photo-oxidation), methyl-Hg demethylation, and Hg methylation. Therefore, this paper is written to provoke discussions, and more importantly, to stimulate research on potential impacts of incoming solar UV-radiation on global Hg fluxes and any toxicity aspects of Hg that may become exacerbated by UV-radiation.  相似文献   

19.
Mueller KE  Shann JR 《Chemosphere》2006,64(6):1006-1014
While trees have demonstrated potential in phytoremediation of several organic contaminants, little is known regarding their ability to impact the common soil contaminant PAHs. Several species of native North American trees were planted in soil artificially contaminated with three PAHs. Plant biomass, PAH dissipation, and microbial mineralization were monitored over the course of one year and environmental conditions were allowed to follow typical seasonal patterns. PAH dissipation and mineralization were not affected by planting. Extensive and rapid loss of PAHs was observed and attributed to high bioavailability and microbial activity in all treatments. The rate of this loss may have masked any significant planting effects. Anthracene was found to be more recalcitrant than pyrene or phenanthrene. Parallel soil aging studies indicated that sequestration to soil components was minimal. Contrary to common inferences in literature, amendment with decaying fine roots inhibited PAH degradation by the soil microbial community. Seasonal variation in environmental factors and rhizosphere dynamics may have also reduced or negated the effect of planting and should be taken into account in future phytoremediation trials. The unique root traits of trees may pose a challenge to traditional thought regarding PAH dissipation in the rhizosphere of plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号