首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.  相似文献   

2.
Abstract: We assembled a time series of 20 Landsat thematic mapper images from 1982 to 1996 for Key Largo, Florida, to ascertain whether satellite imagery can detect temporal changes in coral reef communities. Selected reef and control areas were examined for changes in brightness, spectral reflectance, band ratios, spatial texture, and temporal texture (  pixel-to-pixel change over time). We compared the data to known changes in the reef ecosystem of Carysfort Reef and terrestrial sample sites. Changes in image brightness and spectral-band ratios were suggestive of shifts from coral- to algal-dominated community structure, but the trends were not statistically significant. The spatial heterogeneity of the reef community decreased in the early 1980s at scales consistent with known ecological changes to the coral community on Carysfort Reef. An analysis of pixel-scale variation through time, termed temporal texture, revealed that the shallow reef areas are the most variable in regions of the reef that have experienced significant ecological decline. Thus, the process of reef degradation, which alters both the spatial patterning and variability of pixel brightness, can be identified in unclassified thematic mapper images.  相似文献   

3.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

4.
Fong P  Smith TB  Wartian MJ 《Ecology》2006,87(5):1162-1168
Macroalgal dominance of some tropical reef communities in the Eastern Pacific after coral mortality during the 1997-1998 El Ni?o Southern Oscillation (ENSO) was facilitated by protection from herbivory by epiphytic cyanobacteria. Our results do not support that reduction in number of herbivores was a necessary precursor to coral reef decline and shifts to algal reefs in this system. Rather, macroalgae dominated the community for several years after this pulse disturbance with no concurrent change in herbivore populations. While results of microcosm experiments identified the importance of nutrients, especially phosphorus, in stimulating macroalgal growth, nutrient supply alone could not sustain macroalgal dominance as nutrient-stimulated growth rates in our in situ experiments never exceeded consumption rates of unprotected thalli. In addition, thalli with nutrient-enriched tissue were preferentially consumed, possibly negating the positive effects of nutrients on growth. These tropical reefs may be ideal systems to conduct experimental tests distinguishing phase shifts from alternative stable states. Shifts were initiated by a large-scale disturbance with no evidence of a changing environment except, perhaps, dilution in herbivory pressure due to increased algal cover. Community establishment was most likely stochastic, and the community was likely maintained by strongly positive interaction between macroalgal hosts and cyanobacterial epiphytes that uncoupled consumer control of community structure.  相似文献   

5.
Sponges constitute an abundant and functionally important component of coral reef systems. Given their demonstrated resistance to environmental stress, it might be expected that the role of sponges in reef systems under modern regimes of frequent and severe disturbance may become even more substantial. Disturbances have recently reshaped the community structure of many Caribbean coral reefs shifting them towards a state of persistent low coral cover and often a dominance of macroalgae. Using competition and growth rates recorded from Glover's Atoll in Belize, we parameterise a mathematical model used to simulate the three-way competition between sponges, macroalgae and coral. We use the model to determine the range of parameters in which each of the three species might be expected to dominate. Emergent properties arise from our simple model of this complex system, and these include a special case in which heightened competitive ability of macroalgae versus coral may counter-intuitively prove to be advantageous to the persistence of corals. Importantly, we show that even under scenarios whereby sponges fail to invade the system, inclusion of this third antagonist can qualitatively affect the likelihood of alternative stable states - generally in favour of macroalgal dominance. The interplay between multi-species competition and predation is complex, but our efforts highlight a key process that has, until now, remained unexplored: the extent to which sponges dissipate algal grazing pressure by providing generalist fish with an alternative food source. We highlight the necessity of identifying the extent by which this process takes place in tropical systems in order to improve projections of alternative stable states for Caribbean coral reefs.  相似文献   

6.
Seven fringing reef complexes were chosen along the leeward coast (west) of Barbados to study the effects of eutrophication processes upon the scleractinian coral assemblages. The structure of scleractinian coral communities was studied along an eutrophication gradient with a quantitative sampling method (line transect) in terms of species composition, zonation and diversity patterns. On the basis of these data the fringing reefs were divided into three ecological zones: back reef, reef flat, and spur and groove. Statistically discernible and biologically significant differences in scleractinian coral community structure, benthic algal cover and Diadema antillarum Philippi densities were recorded among the seven fringing reefs. High correlations between environmental variables and biotic patterns indicate that the effects of eutrophication processes (nutrient enrichment, sedimentation, turbidity, toxicity and bacterial activity) were directly and/or indirectly affecting the community structure of scleractinian coral assemblages. In general, species diversity was most sensitive in delineating among-reef, and among-zone, differences, which were attributed to intensification of eutrophication processes. Porites astreoides Lamarck, P. porites (Pallas), Siderastrea radians (Pallas), and Agaricia agaricites (Linnaeus) were the most abundant coral species in the polluted southern reefs. The absence and/or low abundance of coral species previously characterized as well adapted to high turbidity and sedimentation [i.e. Montastrea cavernosa Linnaeus, Meandrina meandrites (Linnaeus)] indicate that eutrophication processes may adversely affect these species. It is suggested that sediment rejection abilities, combined with feeding and reproductive strategies, are the primary biological processes of scleractinian corals through which eutrophication processes directly and/or indirectly affect the structure of coral communities.  相似文献   

7.
Y. Loya 《Marine Biology》1975,29(2):177-185
The community structure and species diversity of hermatypic corals was studied during 1969–1973, in two reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the nature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further south, which is free from oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In September, 1970, both reefs suffered approximately 90% mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was “blooming” with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. It is suggested that phosphate eutrophication and chronic oil pollution are the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and/or development of coral larvae. It is possible that chronic oil, pollution results in either one or a combination of the following: (1) damage to the reproductive system of corals; (2) decreased viability of coral larvae; (3) changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.  相似文献   

8.
Territorial damselfishes that manipulate (“farm”) the algae in their territories can have a marked effect on benthic community structure and may influence coral recovery following disturbances. Despite the numerical dominance of farming species on many reefs, the importance of their grazing activities is often overlooked, with most studies only examining their roles over restricted spatial and temporal scales. We used the results of field surveys covering 9.5° of latitude of the Great Barrier Reef to describe the distribution, abundance and temporal dynamics of farmer communities. Redundancy analysis revealed unique subregional assemblages of farming species that were shaped by the combined effects of shelf position and, to a lesser extent, by latitude. These spatial patterns were largely stable through time, except when major disturbances altered the benthic community. Such disturbances affected the functional guilds of farmers in different ways. Since different guilds of farmers modify benthic community structure and affect survival of juvenile corals in different ways, these results have important implications for coral recovery following disturbances.  相似文献   

9.
Lenihan HS  Holbrook SJ  Schmitt RJ  Brooks AJ 《Ecology》2011,92(10):1959-1971
The species composition of coral communities has shifted in many areas worldwide through the relative loss of important ecosystem engineers such as highly branched corals, which are integral in maintaining reef biodiversity. We assessed the degree to which the performance of recently recruited branching corals was influenced by corallivory, competition, sedimentation, and the interactions between these factors. We also explored whether the species-specific influence of these biotic and abiotic constraints helps to explain recent shifts in the coral community in lagoons of Moorea, French Polynesia. Population surveys revealed evidence of a community shift away from a historically acroporid-dominated community to a pocilloporid- and poritid-dominated community, but also showed that the distribution and abundance of coral taxa varied predictably with location in the lagoon. At the microhabitat scale, branching corals grew mainly on dead or partially dead massive Porites ("bommies"), promontories with enhanced current velocities and reduced sedimentation. A demographic study revealed that growth and survival of juvenile Pocillopora verrucosa and Acropora retusa, the two most common branching species of each taxon, were affected by predation and competition with vermetid gastropods. By 24 months of age, 20-60% of juvenile corals suffered partial predation by corallivorous fishes, and injured corals experienced reduced growth and survival. A field experiment confirmed that partial predation by corallivorous fishes is an important, but habitat-modulated, constraint for branching corals. Competition with vermetid gastropods reduced growth of both branching species but unexpectedly also provided an associational defense against corallivory. Overall, the impact of abiotic constraints was habitat-specific and similar for Acropora and Pocillopora, but biotic interactions, especially corallivory, had a greater negative effect on Acropora than Pocillopora, which may explain the local shift in coral community composition.  相似文献   

10.
Characterizing the Florida Keys National Marine Sanctuary (FKNMS), USA, has gained much attention over the past several decades because of apparent changes in the benthic community structure over space and time representative of patterns occurring in the Caribbean region. We used a 5-year dataset (1996–2000) of macroalgal and sponge cover and water quality measurements as predictor variables of hard coral community structure in the FKNMS. The 16 water quality variables were summarized into 4 groups by principal component analysis (PCA). Hierarchical agglomerative cluster analysis of the mean and standard deviation (SD) of the principal component scores of water quality variables separated the reef sites into two main groups (and five sub-groups), referred to as reefs of similar influence (RSI). The main groups corresponded with their geographical locations within the Florida Keys: the reefs in the Upper and Middle Keys being homogeneous and collectively, having lower water quality scores relative to reefs in the Lower Keys. Canonical correspondence analysis (CCA) between hard coral cover and key predictor variables (i.e., water quality, macroalgal cover and sponge cover) also separated the reefs in the Lower Keys from reefs in the Upper–Middle Keys, consistent with results of the cluster analysis, which categorized reefs based on RSI. These results suggest that the prevailing gradient of predictor variables may have influenced the structuring of coral reef communities at a spatial scale larger than the individual reef. Furthermore, it is conceivable that these predictor variables exerted influence for a long time rather than being a recent event. Results also revealed a pattern showing reduction in hard coral cover and species richness, and subsequent proliferation of macroalgae and sponges during the study period. Our analyses of the Florida Keys present a pattern that is consistent with the characteristics of a reef that has undergone a “phase-shift,” a phenomenon that is widely reported in the Caribbean region.  相似文献   

11.
Continuing coral‐reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral‐reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern‐day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.  相似文献   

12.
Karlson RH  Cornell HV  Hughes TP 《Ecology》2007,88(1):170-177
The spatial dispersion of individuals across multiple spatial scales can significantly influence biodiversity patterns. Here we characterize the dispersion of corals in reef assemblages distributed across a 10000-km longitudinal biodiversity gradient from Indonesia to the Society Islands, using a multiscale sampling design. Our results indicate that most coral species were aggregated among 10-m transect samples across this vast distance. Using observed and randomized species sampling curves, we show that aggregation reduced the number of species per transect, site, and island sample on average by 13-27%. Across site, island, and regional scales, aggregation also reduced the area under species sampling curves by an average of 2.7-6.5%. The level of aggregation was relatively constant across spatial scales within regions and did not vary among habitats. However, there was significant variation among regions using transect samples across individual sites. Specifically, aggregation reduced the species richness per transect and the area under species sampling curves nearly twice as much in the Indonesian biodiversity hotspot than in the Society Islands. As a significant component of the spatial structure of coral assemblages, aggregation should be integrated into our understanding of coral community dynamics and the development of conservation strategies designed to protect these communities.  相似文献   

13.
Despite the rapid rate of human-induced species losses, the relative influence of natural and anthropogenic factors on the functional diversity of species assemblages remains unknown for most ecosystems. A model was previously developed to predict the diversity structure of coral reef fish assemblages in 10 atolls of low human pressure and contrasting morphology of the Tuamotu Archipelago (French Polynesia). This existing model predicted smoothed histograms (spectra) of species richness according to size classes, diet classes and life-history classes of fish assemblages using a combination of environmental characteristics at different spatial scales. The present study applied the model to Tikehau, another atoll of the same archipelago where commercial fishing is practiced and where the same sampling strategy was reproduced. Significant differences appeared between predicted and observed species richness in several size, diet and life-history classes of fish assemblages in Tikehau. Two parameters which were not accounted for in the initial model, i.e. fishing pressure and atoll position within the archipelago, explained together 63% of variance in model residuals, >60% being explained by fishing pressure only. The respective effects of fishing and atoll position on the diversity of coral reef fish assemblages are discussed, with the potential of such modelling approach to assess the relative importance of factors affecting functional diversity within communities.  相似文献   

14.
Dynamics of a coral reef community at Tiao-Shi Reef, southern Taiwan were studied using permanent transects to examine coral recovery and successive cascades to collapse stage resulting from chronic anthropogenic impacts and typhoons. Three distinct zones were recognized within a relatively small study area (250 m across) formerly dominated by large stands of branching Acropora corals. The first zone still retains the dominance of branching Acropora corals, although they show a significant decreasing tendency. The second zone exhibits recovery with a significant increase in branching Montipora stellata, which is recruited and grows faster than branching Acropora corals. The third zone is occupied by anemone, Condylactis sp., and demonstrates a stable phase of coral deterioration without recovery. Such differences in coral reef community dynamics within a small spatial scale illustrate mosaic dynamics which have resulted from degradation of the water quality, patchy mortality of large branching Acropora thickets caused by typhoons, the rapid asexual fragmentation and growth of M. stellata making it a successful colonizer, and occupation by anemone, Condylactis sp., together with unstable remnants of dead Acropora rubbles have not allowed coral recruits to survive.  相似文献   

15.
Ecological theory predicts that habitat generalists are less prone to decline or extinction in response to habitat disturbance than habitat specialists. One mechanism that may afford habitat generalists greater persistence is their ability to successfully emigrate from degrading environments. This study compared the response of habitat specialist and generalist reef fish species to live coral disturbance. In replicate coral colonies, live coral was experimentally degraded (low, medium and high coral loss). Species continued residence within the colonies was then surveyed over time. In addition, the ability of habitat generalist and specialist species to migrate between degraded (100% loss) and live coral colonies was compared. Habitat specialists exhibited a higher propensity to remain in colonies with low levels of coral loss. However, there was no significant difference between specialist and generalist species in continued residence in habitats with either medium or high levels of coral loss; both functional groups showed low levels of residence. In terms of migration success, generalists moved further than specialists and showed higher levels of successful migration over the majority of distances examined. The influence of habitat specialization on the behavioral response to coral loss may be a useful predictor of changes to coral reef fish communities in response to coral disturbance.  相似文献   

16.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

17.
Hillebrand H  Bennett DM  Cadotte MW 《Ecology》2008,89(6):1510-1520
The composition of communities is strongly altered by anthropogenic manipulations of biogeochemical cycles, abiotic conditions, and trophic structure in all major ecosystems. Whereas the effects of species loss on ecosystem processes have received broad attention, the consequences of altered species dominance for emergent properties of communities and ecosystems are poorly investigated. Here we propose a framework guiding our understanding of how dominance affects species interactions within communities, processes within ecosystems, and dynamics on regional scales. Dominance (or the complementary term, evenness) reflects the distribution of traits in a community, which in turn affects the strength and sign of both intraspecifc and interspecific interactions. Consequently, dominance also mediates the effect of such interactions on species coexistence. We review the evidence for the fact that dominance directly affects ecosystem functions such as process rates via species identity (the dominant trait) and evenness (the frequency distribution of traits), and indirectly alters the relationship between process rates and species richness. Dominance also influences the temporal and spatial variability of aggregate community properties and compositional stability (invasibility). Finally, we propose that dominance affects regional species coexistence by altering metacommunity dynamics. Local dominance leads to high beta diversity, and rare species can persist because of source-sink dynamics, but anthropogenically induced environmental changes result in regional dominance and low beta diversity, reducing regional coexistence. Given the rapid anthropogenic alterations of dominance in many ecosystems and the strong implications of these changes, dominance should be considered explicitly in the analysis of consequences of altered biodiversity.  相似文献   

18.
Differential susceptibility among reef-building coral species can lead to community shifts and loss of diversity as a result of temperature-induced mass bleaching events. We evaluate environmental influences on coral colony bleaching over an 8-year period in the Florida Keys, USA. Clustered binomial regression is used to develop models incorporating taxon-specific responses to the environment in order to identify conditions and species for which bleaching is likely to be severe. By building three separate models incorporating environment, community composition, and taxon-specific responses to environment, we show observed prevalence of bleaching reflects an interaction between community composition and local environmental conditions. Environmental variables, including elevated sea temperature, solar radiation, and reef depth, explained 90% and 78% of variability in colony bleaching across space and time, respectively. The effects of environmental variables were only partially explained (33% of variability) by corresponding differences in community composition. Taxon-specific models indicated individual coral species responded differently to local environmental conditions and had different sensitivities to temperature-induced bleaching. For many coral species, but not all, bleaching was exacerbated by high solar radiation. A 25% reduction in the probability of bleaching in shallow locations for one species may reflect an ability to acclimatize to local conditions. Overall, model results indicate predictions of coral bleaching require knowledge of not just the environmental conditions or community composition, but the responses of individual species to the environment. Model development provides a useful tool for coral reef management by quantifying the influence of the local environment on individual species bleaching sensitivities, identifying susceptible species, and predicting the likelihood of mass bleaching events with changing environmental conditions.  相似文献   

19.
Idjadi JA  Karlson RH 《Ecology》2007,88(10):2449-2454
Spatial aggregation among strong competitors has been identified as a putative mechanism promoting the coexistence of weak competitors in intensely competitive communities. With notable exceptions in plant communities, few investigators have tested this hypothesis experimentally. In this study, we manipulated the spatial arrangement of corals to test whether within-patch aggregation of a strong coral competitor enhances the success of a weaker coral competitor. Corals grown in simple aggregated arrangements, where the number and type of competitors were held constant, grew almost twice as much as those in non-aggregated arrangements. These growth results suggest that species coexistence is promoted by aggregation within competitive neighborhoods. Thus spatial aggregation may be one of several important mechanisms contributing to the persistence of weak competitors and species coexistence on coral reefs.  相似文献   

20.
Effects of Fishing on the Ecosystem Structure of Coral Reefs   总被引:7,自引:0,他引:7  
Overfishing is considered one of the three most significant threats to coral reef ecosystems. Exponentially increasing human populations in the tropics have placed enormous demands upon reefs as a food source. At high intensities, termed ecosystem or Malthusian overfishing, fishing causes major direct and indirect effects on the community structure of fishes and other organisms. It reduces species diversity and leads to local extinctions not only of target species but also of other species not fished directly. Conceivably it could also lead to global extinctions. Loss of keystone species, such as predators of echinoderms, through fishing, can lead to major effects on reef processes, such as accretion of calcium carbonate. Ultimately, sustained heavy fishing may lead to loss of entire functional groups of species, resulting in impairment of the potentially important ecosystem functions provided by those groups. Overfishing has been shown to interact with other agents of disturbance to reduce the ability of reefs to recover from natural occurrences such as hurricanes. Effective management of fishing will require a deeper understanding of the effects of exploitation than we now possess. Research initiatives are underway to examine the responses of fish populations to fishing, generally responses to protection from fishing. There is, however, an urgent need to look beyond fish communities and to consider the entire reef ecosystem. Studies that integrate population and community biology with ecosystem processes will provide a much better understanding of the effects of biodiversity loss on reef function and will improve our ability to manage these complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号