首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
2.
Carbon flows and carbon use in the German anthroposphere: An inventory   总被引:2,自引:0,他引:2  
Today, global climate change is one of the most urgent environmental problems. The atmospheric concentration of carbon dioxide (CO2) has to be stabilised by significant reductions of CO2 emissions in the next decades to keep the expected temperature rise within tolerable borders. Efforts exceeding the implemented measures to reduce CO2 emissions in Germany are desirable. An important pre-condition for such measures is a scientific-based inventory of the sources, sinks, and use of carbon.In this paper, we present CarboMoG, i.e. Carbon Flow Model of Germany. CarboMoG is a carbon flow model covering carbon flows, carbon sources and sinks in Germany and the German anthroposphere, showing concurrent energy and non-energy use of carbon sources.The model consists of seven modules in German anthroposphere following the German classification of economic sectors. Carbon flows to and from atmosphere and lithosphere as well as imports and exports were included into the model. The model comprises roughly 220 material flows determined based on material flow procedures for the base year 2000.Main sources of carbon are fossil energy carriers from lithosphere and uptake of CO2 by crops (52% resp. 48% of all carbon sources). The model calculations show that import of energy carriers dominates total carbon import to Germany (82%). Total non-energy use of carbon in Germany is significantly higher than energy use (386 Mt C and 230 Mt C, resp.). Carbon throughput of Industry is greatest (about 224 Mt C input), followed by Energy (about 129 Mt C input). Agriculture and Forestry & Industry show the highest figure for non-energy use of carbon, energy use of carbon is largest in the Energy sector. Emissions of CO2 to atmosphere account for 94% of all carbon flows to sinks in Germany. Carbon accumulates in German anthroposphere 5 Mt C in 2000.  相似文献   

3.

Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.

  相似文献   

4.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   

5.
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6–0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.  相似文献   

6.
The paper presents a methodology for CO2 chain analysis with particular focus on the impact of technology development on the total system economy. The methodology includes the whole CO2 chain; CO2 source, CO2 capture, transport and storage in aquifers or in oil reservoirs for enhanced oil recovery. It aims at supporting the identification of feasible solutions and assisting the selection of the most cost-effective options for carbon capture and storage. To demonstrate the applicability of the methodology a case study has been carried out to illustrate the possible impact of technology improvements and market development. The case study confirms that the CO2-quota price to a large extent influence the project economy and dominates over potential technology improvements. To be economic feasible, the studied chains injecting the CO2 in oil reservoirs for increased oil production require a CO2-quota price in the range of 20–27 €/tonne CO2, depending on the technology breakthrough. For the chains based on CO2 storage in saline aquifers, the corresponding CO2-quota price varies up to about 40 €/tonne CO2.  相似文献   

7.
Stable carbon isotopes are important tools to assess potential storage sites for CO2, as they allow the quantification of ionic trapping via isotope mass balances. In deep geological formations high p/T conditions need to be considered, because CO2 dissolution, equilibrium constants and isotope fractionation of dissolved inorganic carbon (DIC) depend on temperature, pressure and solute composition. After reviewing different approaches to account for these dependencies, an expanded scheme is presented for speciation and carbon isotope fractionation of DIC and dissolution of CaCO3 for pCO2 up to 100 bar, pH down to 3 and temperatures of up to 200 °C. The scheme evaluates the influence of respective parameters on isotope ratios during CO2 sequestration. The pCO2 and pH are the dominant controlling factors in the DIC/δ13C/pH system. The fugacity of CO2 has major impact on DIC concentrations at temperatures below 100 °C at high pCO2. Temperature dependency of activities and equilibrium dominates at temperatures above 100 °C. Isotope ratios of DIC are expected to be about 1–2‰ more depleted in 13C compared to the free CO2 at pCO2 values above 10 bar. This depletion is controlled by carbon isotope fractionation between CO2 and H2CO3* which is the dominant species of DIC at the resulting pH below 5.  相似文献   

8.
In general, CO2 sequestration by carbonation is estimated by laboratory experimentation and geochemical simulation. In this study, however, estimation is based on a natural analogue study of the Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan. This region has great potential in terms of geological and geochemical environments for CO2 sequestration. Outcropping Miocene basalt in the study area shows extensive serpentinization and carbonation. The carbon stable isotopes of carbonates lie on the depleted side of the Lohmann meteoric calcite line, which demonstrates that the carbonates most probably precipitate directly from meteoric fluid, and water–rock interaction is less involved in the carbonation process. Oxygen stable isotope examinations also show much depleted ratios, representative of product formation under low temperatures (∼50–90 °C). This translates to a depth of 1–2 km, which is a practical depth for a CO2 sequestration reservoir. According to petrographic observation and electron microprobe analysis, the diopside grains in the basalt are resistant to serpentinization and carbonation; therefore, the fluid causing alteration is likely enriched with calcium and there must be additional sources of calcium for carbon mineralization. These derived geochemical properties of the fluid support the late Miocene sandstone and enclosed basalts as having high potential for being a CO2 sequestration reservoir. Moreover, the existing geochemical environments allow for mineralogical assemblages of ultramafic xenoliths, indicating that forsterite, orthopyroxene and feldspar minerals are readily replaced by carbonates. Based on the mineral transformation in xenoliths, the capacity of CO2 mineral sequestration of the Miocene basalt is semi-quantitatively estimated at 94.15 kg CO2 chemically trapped per 1 m3 basalt. With this value, total CO2 sequestration capacity can be evaluated by a geophysical survey of the amount of viable Miocene basalt at the potential sites. Such a survey is required in the near future.  相似文献   

9.
The gasification reaction of Nantong inferior coal was investigated in a laboratory fixed-bed reactor under CO2 and O2/H2O atmospheres. The effects of the bed temperature and inlet-gas concentration on the yields of CO, H2, and CH4 were studied. The effects of coal ash and particle size on the fixed-carbon conversion were also investigated, and kinetic analysis was conducted with a homogeneous model. The product-gas-heating value and fixed-carbon conversion increased when the temperature was increased from 950 °C to 1100 °C under CO2 atmosphere. When the inlet-CO2 concentration was increased from 50 to 100 vol.%, the low heating value of the product gas and carbon conversion ratio slightly increased. During the gasification of inferior coal under the O2/H2O atmosphere, the CO concentration increased rapidly with increasing temperature. The H2 and CH4 concentrations increased initially and then decreased. The maximum gas heating value of 7934 kJ/m3 was obtained under the O2 concentration of 70 vol.% at a bed temperature of 1050 °C. The cold-gas efficiency increased with increasing temperature and became 40.6% and 86.4% at 1100 °C under the CO2 and O2/H2O atmospheres, respectively. The gasification reaction of the Nantong inferior coal strongly depended on the content of inherent inorganic matter. The gasification rates for both the CO2 and O2/H2O atmospheres were independent of the particle size. The activation energy for the CO2 and O2/H2O gasification reactions were 137 and 81 kJ/mol, respectively. The gasification reactions of the Nantong coal, which was performed under two different atmospheres, were compared and the reaction activity of the gasification reaction under CO2 atmosphere was found to be much lower than that under the O2/H2O atmosphere.  相似文献   

10.
Global warming is a result of increasing anthropogenic CO2 emissions, and the consequences will be dramatic climate changes if no action is taken. One of the main global challenges in the years to come is therefore to reduce the CO2 emissions.Increasing energy efficiency and a transition to renewable energy as the major energy source can reduce CO2 emissions, but such measures can only lead to significant emission reductions in the long-term. Carbon capture and storage (CCS) is a promising technological option for reducing CO2 emissions on a shorter time scale.A model to calculate the CO2 capture potential has been developed, and it is estimated that 25 billion tonnes CO2 can be captured and stored within the EU by 2050. Globally, 236 billion tonnes CO2 can be captured and stored by 2050. The calculations indicate that wide implementation of CCS can reduce CO2 emissions by 54% in the EU and 33% globally in 2050 compared to emission levels today.Such a reduction in emissions is not sufficient to stabilize the climate. Therefore, the strategy to achieve the necessary CO2 emissions reductions must be a combination of (1) increasing energy efficiency, (2) switching from fossil fuel to renewable energy sources, and (3) wide implementation of CCS.  相似文献   

11.
ABSTRACT: There are increasing concerns in the forestry community about global climate change and variability associated with elevated atmospheric CO2. Changes in precipitation and increases in air temperature could impose additional stress on forests during the next century. For a study site in Carteret County, North Carolina, the General Circulation Model, HADCM2, predicts that by the year 2099, maximum air temperature will increase 1.6 to 1.9°C, minimum temperature will increase 2.5 to 2.8°C, and precipitation will increase 0 to 10 percent compared to the mid‐1990s. These changes vary from season to season. We utilized a forest ecosystem process model, PnET‐II, for studying the potential effects of climate change on drainage outflow, evapotranspiration, leaf area index (LAI) and forest Net Primary Productivity (NPP). This model was first validated with long term drainage and LAI data collected at a 25‐ha mature loblolly pine (Pinus taeda L.) experimental watershed located in the North Carolina lower coastal plain. The site is flat with poorly drained soils and high groundwater table. Therefore, a high field capacity of 20 cm was used in the simulation to account for the topographic effects. This modeling study suggested that future climate change would cause a significant increase of drainage (6 percent) and forest productivity (2.5 percent). Future studies should consider the biological feedback (i.e., stomata conductance and water use efficiency) to air temperature change.  相似文献   

12.
In the carbon capture and storage (CCS) chain, transport and storage set different requirements for the composition of the gas stream mainly containing carbon dioxide (CO2). Currently, there is a lack of standards to define the required quality for CO2 pipelines. This study investigates and recommends likely maximum allowable concentrations of impurities in the CO2 for safe transportation in pipelines. The focus is on CO2 streams from pre-combustion processes. Among the issues addressed are safety and toxicity limits, compression work, hydrate formation, corrosion and free water formation, including the cross-effect of H2S and H2O and of H2O and CH4.  相似文献   

13.
Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO2 concentration that may lead to global warming. Forestation and other forest management options to sequester CO2 in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. The information in this document has been wholly funded by the US Environmental Protection Agency. It has been subjected to the agency's peer and administrative review and approved for publication of an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

14.
This work reveals levels of corrosion rate and polarization behavior of carbon steel immersed in aqueous solutions of monoethanolamine (MEA) used in the absorption-based carbon dioxide (CO2) capture process for greenhouse gas reduction from industrial flue gas streams. Such information was obtained from electrochemical-based corrosion experiments under a wide range of the CO2 capture process conditions. The corrosion of carbon steel was evaluated in respect to process parameters including partial pressure of oxygen (O2), CO2 loading in solution, solution velocity, solution temperature, MEA concentration and metal surface condition. Results show that the aqueous MEA solution containing CO2 provides a favorable condition for the corrosion of carbon steel to proceed. Corrosion rate is increased by all tested process parameters. These parametric effects were explained by the electrochemical kinetic data obtained from polarization curves and by the thermodynamic data obtained from Pourbaix diagram.  相似文献   

15.
This paper introduces an integrated assessment (IA) approach for a Canada-China joint research project that linked forest carbon sequestration, forest resource management, and local sustainability enhancement. The purpose of the IA was to improve the measurement of carbon in different land uses and vegetation covers, as well as to direct decision makers to those land uses or options as an CO2 emission reduction strategy while supporting rural sustainable development. In this connection, three questions are addressed in this paper:
1)
How will forestry carbon sequestration land use policies affect regional sustainability prospects in rural China?  相似文献   

16.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   

17.
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds.  相似文献   

18.
To test the injection behaviour of CO2 into brine-saturated rock and to evaluate the dependence of geophysical properties on CO2 injection, flow and exposure experiments with brine and CO2 were performed on sandstone samples of the Stuttgart Formation representing potential reservoir rocks for CO2 storage. The sandstone samples studied are generally fine-grained with porosities between 17 and 32% and permeabilities between 1 and 100 mD.Additional batch experiments were performed to predict the long-term behaviour of geological CO2 storage. Reservoir rock samples were exposed over a period of several months to CO2-saturated reservoir fluid in high-pressure vessels under in situ temperature and pressure conditions. Petrophysical parameters, porosity and the pore radius distribution were investigated before and after the experiments by NMR (Nuclear Magnetic Resonance) relaxation and mercury injection. Most of the NMR measurements of the tested samples showed a slight increase of porosity and a higher proportion of large pores.  相似文献   

19.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   

20.
全面推动实现减污降碳协同增效是新发展阶段我国兑现碳达峰碳中和庄严承诺、深入打好污染防治攻坚战、建设美丽中国的必然要求。环境污染物与二氧化碳排放的高度同源性是实现减污降碳协同增效的理论基础。本文首先就目标指标、管控区域、控制对象、措施任务、政策工具五个方面的协同性系统讨论了减污降碳协同增效的基本内涵。其次,着眼于当前大气环境治理与碳减排在中国的重要性,本文在国家层面讨论了二者的中长期协同控制路线图,阐述了重点协同区域的识别方法和重点部门的协同治理思路,系统提出了大气环境治理与碳减排的协同路径。再次,本文还就“无废城市”建设和生态保护这两个领域与碳减排的协同治理思路展开分析讨论。最后,针对减污降碳协同治理对政策体系的需求,提出了统筹优化减污降碳协同目标、建立协同法规标准、建立减污降碳协同管理制度三个方面的建议。本研究将有助于厘清各方对减污降碳协同增效的认识,对各级政府后续推进减污降碳协同治理工作提供理论和科学基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号