首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Motor vehicle exhaust emissions are one of the major causes of air quality deterioration in most of the cities of the developing world. Carbon monoxide (CO) and nitrogen dioxide (NO2) are significant contributors to this adverse effect on the environment. This study analyses air quality data for three years from 1997 to 1999, at two air quality control regions in Delhi city. The regions are a major traffic intersection and the moderately busy straight Khelgaon Marg road. The data were obtained from the Central Pollution Control Board (CPCB), Delhi. The results show that the highest ground-level concentrations of CO and NO2 occurred during winter (November to March) and the lowest during the tropical monsoon period (July to September) at both regions. Typical average monthly, weekly and diurnal cycles of CO at both regions have also been analysed, and show that CO concentrations are higher at the intersection than along the road. Further, the monthly average NO2 concentrations were also found to be higher at the intersection.  相似文献   

2.
3.
Methane and carbon dioxide emissions from closed landfill in Taiwan   总被引:1,自引:0,他引:1  
Chen IC  Hegde U  Chang CH  Yang SS 《Chemosphere》2008,70(8):1484-1491
The atmospheric concentrations and emission rates of CH(4) and CO(2) were studied at three sites of the Fu-Der-Kan closed landfill and after as the multi-use recreational park in northern Taiwan. Atmospheric CH(4) and CO(2) concentrations of closed landfill were 1.7-4.6 and 324-409ppm, respectively. CH(4) and CO(2) emission rates ranged from 8.8 to 163mg m(-2)h(-1) and from 495 to 1531mg m(-2)h(-1), respectively. Diurnal variation was noted with higher values at night than those in daytime. After creation of the park, atmospheric CH(4) and CO(2) concentrations were 1.8-3.1 and 332-441ppm, respectively. CH(4) and CO(2) emission rates ranged from -1.1 to 2.3mg m(-2)h(-1) and from -135 to 301mg m(-2)h(-1), respectively. There were no notable diurnal variations in either atmospheric concentrations or emission rates.  相似文献   

4.
The Main Geophysical Observatory 2D channel photochemical model is used to study the behavior of tropospheric OH within the 30–60°N zonal belt in relation to changing NOX and CO emissions. The changes of tropospheric OH as a function of the contributions by NOX and CO emissions during the period 1850–2050 are calculated. Our estimations show that the largest annual increment of total tropospheric OH within the belt considered occurs in the 1985–1995 period, about 0.27% yr−1. Based on scenarios of tropospheric pollution emissions in the first half of 21st century, the total tropospheric OH content will increase more slowly, by 0.12–0.15% yr−1. The maximum growth of OH concentration occurs close to air pollution locations—in the lower troposphere during 1850–1995 but in the upper troposphere in the 21st century when the NOX source from subsonic aircraft increases faster than the surface source.  相似文献   

5.
The washout coefficient of a gas in air is the fraction of it removed in unit time by rain below cloud base. The ‘apparent’ coefficients were estimated by statistically comparing hourly ground-level concentrations just before and at the onset of heavy, non-frontal rain. The concentrations were obtained from 5 y of continuous monitoring at a rural site.The coefficient (s−1) estimated for SO2 was (2.61 ± 0.14) × 10−5 times the rate of rainfall (mm h −1). This is completely consistent with a previously published value derived from the data from 10 rural sites for one year, and both estimates are consistent with published values of dissolved SO2 in rainwater at another rural site, giving some confidence in the technique.The values of the coefficients estimated for NO and NO2 were about 40 and 80%, respectively of that for SO2. Some nitrite is found in rainwater, but not enough to explain the washout found. However, the analysers used would measure HNO3 aerosols as NO2, and these are very soluble. In addition, fast reactions are known which can convert oxides of nitrogen into soluble nitrates, present in sufficient concentration in rainwater.The statistical process leads to the coefficient estimated for O3 being negative, implying that O3 is produced at the time of rain. This is most probably due to the strong winds and turbulence which accompany heavy rain, giving replenishment of low-level O3 from upper air levels where O3 is normally produced. No systematic changes in the other gas concentrations accompany the changes in O3 values.  相似文献   

6.
Environmental Science and Pollution Research - The relationship between income inequality, economic growth, and CO2 emissions is ambiguous both theoretically and empirically. Hence, this study...  相似文献   

7.
Hegde U  Chang TC  Yang SS 《Chemosphere》2003,52(8):1275-1285
To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.  相似文献   

8.
Abstract

A method for the detection of pentachlorophenol (PCP) residues in chicken liver and fat is presented. A detection limit of 0.002 mg/kg was achieved. Recoveries from liver and fat were in the range 82–88% and 95–97%, respectively.

Low level residues of PCP were found in all 1072 liver and 723 fat samples. These levels were <0.010 mg/kg in 92.7% of the fat and 75.6% of the livers. Only 0.75% of the liver samples had PCP levels>0.1 mg/kg. None of the more toxic impurities of PCP were detected in the chicken tissues.  相似文献   

9.
A method for the detection of pentachlorophenol (PCP) residues in chicken liver and fat is presented. A detection limit of 0.002 mg/kg was achieved. Recoveries from liver and fat were in the range 82-88% and 95-97%, respectively. Low level residues of PCP were found in all 1072 liver and 723 fat samples. These levels were less than 0.010 mg/kg in 92.7% of the fat and 75.6% of the livers. Only 0.75% of the liver samples had PCP levels greater than 0.1 mg/kg. None of the more toxic impurities of PCP were detected in the chicken tissues.  相似文献   

10.
We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.  相似文献   

11.
We implemented a program in which emission characterization is enabled through collaborations between academic, US and international non-governmental entities that focus on evaluation, dissemination, and in-use testing, of improved cookstoves. This effort resulted in a study of field and laboratory emissions from traditional and improved biofuel cookstoves. We found that field measured particulate emissions of actual cooking average three times those measured during simulated cooking in the laboratory. Emission factors are highly dependent on the care and skill of the operator and the resulting combustion; these do not appear to be accurately reproduced in laboratory settings. The single scattering albedo (SSA) of the emissions was very low in both lab and field measurements, averaging about 0.3 for lab tests and around 0.5 for field tests, indicating that the primary particles are climate warming. Over the course of three summers in Honduras, we measured field emissions from traditional cookstoves, relatively new improved cookstoves, and “broken-in” improved cookstoves. We found that well-designed improved cookstoves can significantly reduce PM and CO emission factors below traditional cookstoves. For improved stoves, the presence of a chimney generally resulted in lower emission factors but left the SSA unaffected. Traditional cookstoves had an average PM emission factor of 8.2 g kg?1 – significantly larger than previous studies. Particulate emission factors for improved cookstoves without and with chimneys averaged about 6.6 g kg?1 and 4.5 g kg?1, respectively. The elemental carbon (EC) fraction of PM varied significantly between individual tests, but averaged about 25% for each of the categories.  相似文献   

12.
13.
Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM10 and PM2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.  相似文献   

14.
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.  相似文献   

15.
16.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

17.
Carbon dioxide (CO2) emissions from U.S. power plants are independently reported by the U.S. Energy Information Administration (EIA) and the Clean Air Markets Division (CAMD) within the U.S. Environmental Protection Agency (EPA). Differences between the CAMD and EIA emission tallies show that the amount of CO2 produced by an individual power plant is less certain than might be imagined or desired. These differences are attributed to systematic error and random measurement error. Random error cannot be retroactively corrected, whereas systematic error can be corrected where relevant data are available. Accordingly, this study identified and, where possible, corrected systematic error affecting the CAMD and EIA CO2 emission tallies for 1065 power plants that emitted more than 25,000 tons of CO2 during 2013. The EIA tallies were corrected by accounting for emission factor error, acid-gas sorbent consumption, and combustion of biogenic fuel. The CAMD tallies were likewise corrected by accounting for unreported unit emissions. It was not possible to objectively correct systematic error affecting about 11% of the power plants, and subjective corrections were not attempted. At these plants, the CAMD and EIA emission tallies sometimes differed by more than 20% due to missing unit error, plant identification error, temporal measurement error, or inferred reporting error. Comparisons of the CAMD and EIA emission tallies before and after correction for systematic error show the effectiveness of these corrections. The comparisons also show the persistence of random measurement error.

Implications: Understanding the uncertainty of CO2 emission tallies for USA power plants might inform emission inventories, atmospheric flow models or inversions, and emission reduction policies. Knowing the cause and size of measurement errors that contribute to this uncertainty might also help to identify ways to improve the measurement methods and reporting protocols that these CO2 emission tallies are based on.  相似文献   


18.
Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.  相似文献   

19.
In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

20.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号