首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study targets understanding the secondary sources of organic aerosol in Mexico City during the Megacities Impact on Regional and Global Environment (MIRAGE) 2006 field campaign. Ambient PM2.5 was collected daily at urban and peripheral locations. Particle-phase secondary organic aerosol (SOA) products of anthropogenic and biogenic precursor gases were measured by gas chromatography mass spectrometry. Ambient concentrations of SOA tracers were used to estimate organic carbon (OC) from secondary origins (SOC). Anthropogenic SOC was estimated as 20–25% of ambient OC at both sites, while biogenic SOC was less abundant, but was relatively twice as important at the peripheral site. The OC that was not attributed secondary sources or to primary sources in a previous study showed temporal consistency with biomass-burning events, suggesting the importance of secondary processing of biomass-burning emissions in the region. The best estimate of biomass-burning-related SOC was in the range of 20–30% of ambient OC during peak biomass burning events. Low-molecular weight (MW) alkanoic and alkenoic dicarboxylic acids (C2–C5) were also measured, of which oxalic acid was the most abundant. The spatial and temporal trends of oxalic acid differed from tracers for primary and secondary sources, suggesting that it had different and/or multiple sources in the atmosphere.  相似文献   

2.
The models HARM and ELMO are used to investigate the importance of different source categories contributing to total PM10 (SIA, SOA and primary particulate matter) across the UK and the impact of uncertainties on both present day and future concentration estimates. Modelled concentrations of SIA (secondary inorganic aerosol) are compared against data from the UK's Nitric Acid and Aerosol Network and SOA (secondary organic aerosol) against measurements made at the Bush Estate, Edinburgh. These data indicate that the HARM/ELMO modelling approach comes close to achieving mass closure. Comparison with national maps of total PM10 indicate that the models underestimate particulate matter concentrations around large conurbations, probably due to the localised nature of emissions of primary particulates in these areas and model scale. The models are used to attribute particulate matter to different source and size categories, assessing the relative importance of primaries, SIA and SOA; the contributions of anthropogenic and biogenic precursors of SOA; the relative importance of PMcoarse (PM10–PM2.5) and PMfine (PM2.5) and UK vs. other EMEP area sources. The implications of these attributions for emissions control policies are discussed. The impact of uncertainties in emissions of the sources of primaries, SIA and SOA are explored. For primary PM10 and SOA this has been achieved through emissions scaling and for SIA using the GLUE (Generalised Likelihood Uncertainty Estimation) approach. The selection of acceptable model parameter sets has been based on the need to retain the capability to model deposition of S and N species. The impact of uncertainty on estimates of present day SIA concentrations is illustrated for sites in the Nitric Acid and Aerosol Network. A more limited assessment for 2010 has been carried out at the national scale, illustrating that inclusion of uncertainty can change modelled concentrations from no exceedance of current air quality objectives, to one of exceedance over large areas of south and east England.  相似文献   

3.
Natural emissions adopted in current regional air quality modeling are updated to better describe natural background ozone and PM concentrations for North America. The revised natural emissions include organosulfur from the ocean, NO from lightning, sea salt, biogenic secondary organic aerosol (SOA) precursors, and pre-industrial levels of background methane. The model algorithm for SOA formation was also revised. Natural background ozone concentrations increase by up to 4 ppb in annual average over the southeastern US and Gulf of Mexico due to added NO from lightning while the revised biogenic emissions produced less ozone in the central and western US. Natural PM2.5 concentrations generally increased with the revised natural emissions. Future year (2018) simulations were conducted for several anthropogenic emission reduction scenarios to assess the impact of the revised natural emissions on anthropogenic emission control strategies. Overall, the revised natural emissions did not significantly alter the ozone responses to the emissions reductions in 2018. With revised natural emissions, ozone concentrations were slightly less sensitive to reducing NOx in the southeastern US than with the current natural emissions due to higher NO from lightning. The revised natural emissions have little impact on modeled PM2.5 responses to anthropogenic emission reductions. However, there are substantial uncertainties in current representations of natural sources in air quality models and we recommend that further study is needed to refine these representations.  相似文献   

4.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was conducted in Big Bend National Park, Texas, July through October 1999. Daily PM2.5 organic aerosol samples were collected on pre-fired quartz fiber filters. Daily concentrations were too low for detailed organic analysis by gas chromatography-mass spectrometry (GC-MS) and were grouped based on their air mass trajectories. A total of 12 composites, each containing 3–10 daily samples, were analyzed. Alkane carbon preference indices suggest primary biogenic emissions were small contributors to primary PM2.5 organic matter (OM) during the first 3 months, while in October air masses advecting from the north and south were more strongly influenced by biogenic sources. A series of trace organic compounds previously shown to serve as particle phase tracers for various carbonaceous aerosol source types were examined. Molecular tracer species were generally at or below detection limits, except for the wood smoke tracer levoglucosan in one composite, so maximum possible source influences were calculated using the detection limit as an upper bound to the tracer concentration. Wood smoke was found not to contribute significantly to PM2.5 OM, with contributions for most samples at <1% of the total organic particulate matter. Vehicular exhaust also appeared to make only minor contributions, with maximum possible influences calculated to be 1–4% of PM2.5 OM. Several factors indicate that secondary organic aerosol formation was important throughout the study, and may have significantly altered the molecular composition of the aerosol during transport.  相似文献   

5.
Abstract

Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 µm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4 2?], nitrate [NO3 ?], ammonium [NH4 +]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and β-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12–42 µg m?3. Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.  相似文献   

6.
This paper presents chemical mass balance (CMB) analysis of organic molecular marker data to investigate the sources of organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. The model accounts for emissions from eight primary source classes, including major anthropogenic sources such as motor vehicles, cooking, and biomass combustion as well as some primary biogenic emissions (leaf abrasion products). We consider uncertainty associated with selection of source profiles, selection of fitting species, sampling artifacts, photochemical aging, and unknown sources. In the context of the overall organic carbon (OC) mass balance, the contributions of diesel, wood-smoke, vegetative detritus, road dust, and coke-oven emissions are all small and well constrained; however, estimates for the contributions of gasoline-vehicle and cooking emissions can vary by an order of magnitude. A best-estimate solution is presented that represents the vast majority of our CMB results; it indicates that primary OC only contributes 27±8% and 50±14% (average±standard deviation of daily estimates) of the ambient OC in the summer and winter, respectively. Approximately two-thirds of the primary OC is transported into Pittsburgh as part of the regional air mass. The ambient OC that is not apportioned by the CMB model is well correlated with secondary organic aerosol (SOA) estimates based on the EC-tracer method and ambient concentrations of organic species associated with SOA. Therefore, SOA appears to be the major component of OC, not only in summer, but potentially in all seasons. Primary OC dominates the OC mass balance on a small number of nonsummer days with high OC concentrations; these events are associated with specific meteorological conditions such as local inversions. Primary particulate emissions only contribute a small fraction of the ambient fine-particle mass, especially in the summer.  相似文献   

7.
Biogenic emissions and secondary organic aerosols (SOA) are strongly dependent on climatic conditions. To understand the SOA levels and their sensitivity to future climate change in the United States (U.S.), we present a modeling work with the consideration of SOA formation from the oxidation of biogenic emissions with atmospheric oxidants (e.g., OH, O3, and NO3). The model simulation for the present-day climate is evaluated against satellite and ground-based aerosol measurements. Although the model underestimates aerosol concentrations over the northwestern U.S. due to the lack of fire emissions in the model simulations, overall, the SOA results agree well with previous studies. Comparing with the available measurements of organic carbon (OC) concentrations, we found that the amount of SOA in OC is significant, with the ratio ranging from 0.1 to 0.5/0.6. The enhanced modeling system driven by global climate model output was also applied for two three-year one-month simulations (July, 2001–2003 and 2051–2053) to examine the sensitivity of SOA to future climate change. Under the future two emissions scenarios (A1B and A2), future temperature changes are predicted to increase everywhere in the U.S., but with different degrees of increase in different regions. As a result of climate change in the future, biogenic emissions are predicted to increase everywhere, with the largest increase (~20%) found in the southeastern and northwestern U.S. under the A1B scenario. Changes in SOA are not identical with those in biogenic emissions. Under the A1B scenario, the biggest increase in SOA is found over Texas, with isoprene emissions being the major contributor to SOA formation. The range of change varies from 5% over the southeast region to 26% over Texas. The changes in either biogenic emissions or SOA under the two climate scenarios are different due to the differences in climatic conditions. Our results also suggest that future SOA concentrations are also influenced by several other factors such as the partitioning coefficients, the atmospheric oxidative capability, primary organic carbon aerosols and anthropogenic emissions.  相似文献   

8.
High concentration of fine airborne particulates is considered one of the major environmental pollutants in Santiago, the Chilean Capital city, which in 1997 was declared a PM10 saturated zone. To date there is no control of the amounts of fine and coarse aerosols concentrations and the source and chemical characterizations of the PM2.5 particulates in the carbonaceous fractions are not well known even though this fraction could be represented almost the 50% in mass of the PM2.5.In this work, we present for the first time determinations of primary organic aerosol (POA) and secondary organic aerosol composition (SOA) fractions of the total mass of PM2.5 particulates collected in the urban atmosphere of Santiago City. Our purpose is to know the anthropogenic contributions to the formation of SOA. To accomplish this we used the elemental carbon (EC) and organic carbon (OC) determinations developed by automatic monitoring stations installed in the city during the period 2002–2005, with a particular analysis of the summer time occurred in February 2004. Based on the EC tracer method, we have estimated the POA and SOA fraction and our data permit us to estimate the SOA reaching up to 20% of total organic aerosol matter, in good agreement to other measurements observed in large cities of Europe and U.S.A.  相似文献   

9.
An organic tracer-based method containing laboratory and field study components was used to estimate the secondary organic aerosol (SOA) contributions of biogenic and anthropogenic hydrocarbons to ambient organic carbon (OC) concentrations in PM2.5 during 2003 in Research Triangle Park, NC. In the laboratory, smog chamber experiments were conducted where isoprene, α-pinene, β-caryophyllene, and toluene were individually irradiated in the presence of NOX. In each experiment, SOA was collected and analyzed for potential tracer compounds, whose concentrations were used to calculate a mass fraction of tracer compounds for each hydrocarbon. In the field, 33 PM2.5 samples were collected and analyzed for (1) tracer compounds observed in the laboratory irradiations, (2) levoglucosan, a biomass burning tracer, and (3) total OC. For each of the four hydrocarbons, the SOA contributions to ambient OC concentrations were estimated using the tracer concentrations and the laboratory-derived mass fractions. The estimates show SOA formation from isoprene, α-pinene, β-caryophyllene, and toluene contributed significantly to the ambient OC concentrations. The relative contributions were highly seasonal with biomass burning in the winter accounting for more than 50% of the OC concentrations, while SOA contributions remained low. However, during the 6-month period between May and October, SOA from the precursor hydrocarbons contributed more than 40% of the measured OC concentration. Although the tracer-based method is subject to considerable uncertainty due to the simplification of replacing the complex set of chemical reactions responsible for SOA with a laboratory-derived single-valued mass fraction, the results suggest this approach can be used to identify major sources of SOA which can assist in the development of air quality models.  相似文献   

10.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   

11.
ABSTRACT

With the promulgation of a national PM2.5 ambient air quality standard, it is important that PM2.5 emissions inventories be developed as a tool for understanding the magnitude of potential PM2.5 violations. Current PM10 inventories include only emissions of primary particulate matter (1 ï PM), whereas, based on ambient measurements, both PM10 and PM2.5 emissions inventories will need to include sources of both 1ï PM and secondary particulate matter (2ï PM). Furthermore, the U. S. Environmental Protection Agency’s (EPA) current edition of AP-42 includes size distribution data for 1o PM that overestimate the PM2.5 fraction of fugitive dust sources by at least a factor of 2 based on recent studies.

This paper presents a PM2.5 emissions inventory developed for the South Coast Air Basin (SCAB) that for the first time includes both 1ï PM and 2ï PM. The former is calculated by multiplying PM10 emissions estimates by the PM2.5/PM10 ratios for different sources. The latter is calculated from estimated emission rates of gas-phase aerosol precursor and gas to aerosol conversion rates consistent with the measured chemical composition of ambient PM2.5 concentrations observed in the SCAB. The major finding of this PM2.5 emissions inventory is that the aerosol component is more than twice the aerosol component, which may result in widely different control strategies being required for fine PM and coarse PM.  相似文献   

12.
Abstract

The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic‐related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24‐hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature‐resolved carbon fractions also enhanced separations of carbon‐rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate‐rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature‐resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

13.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

14.
In order to investigate the secondary organic aerosol (SOA) response to changes in biogenic volatile organic compounds (VOC) emissions in the future atmosphere and how important will SOA be relative to the major anthropogenic aerosol component (sulfate), the global three-dimensional chemistry/transport model TM3 has been used. Emission estimates of biogenic VOC (BVOC) and anthropogenic gases and particles from the literature for the year 2100 have been adopted.According to our present-day model simulations, isoprene oxidation produces 4.6 Tg SOA yr−1, that is less than half of the 12.2 Tg SOA yr−1 formed by the oxidation of other BVOC. In the future, nitrate radicals and ozone become more important than nowadays, but remain minor oxidants for both isoprene and aromatics. SOA produced by isoprene is estimated to almost triple, whereas the production from other BVOC more than triples. The calculated future SOA burden change, from 0.8 Tg at present to 2.0 Tg in the future, is driven by changes in emissions, oxidant levels and pre-existing particles. The non-linearity in SOA formation and the involved chemical and physical feedbacks prohibit the quantitative attribution of the computed changes to the above-mentioned individual factors. In 2100, SOA burden is calculated to exceed that of sulfate, indicating that SOA might become more important than nowadays. These results critically depend on the biogenic emissions and thus are subject to the high uncertainty associated with these emissions estimated due to the insufficient knowledge on plant response to carbon dioxide changes. Nevertheless, they clearly indicate that the change in oxidants and primary aerosol caused by human activities can contribute as much as the change in BVOC emissions to the increase of the biogenic SOA production in the future atmosphere.  相似文献   

15.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

16.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

17.
Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.  相似文献   

18.
Abstract

A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002–2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5–10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09–11.31 μm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

19.
The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC–MS methods. In addition to the known isoprene photooxidation products 2-methylglyceric acid, 2-methylthreitol, and 2-methylerythritol, three other peaks of note were detected: one of these was consistent with a silylated-derivative of sulfuric acid, while the remaining two were other oxidized organic compounds detected only when acidic aerosol was present. These two oxidation products were also detected in field samples, and their presence was found to be dependent on both the apparent degree of aerosol acidity as well as the availability of isoprene aerosol. The average concentrations of the sum of these two compounds in the ambient PM2.5 samples ranged from below the GC–MS detection limit during periods when the isoprene emission rate or apparent acidity were low to approximately 200 ng m?3 (calibrations being based on a surrogate compound) during periods of high isoprene emissions. These compounds presently unidentified have the potential to serve as organic tracers of isoprene SOA formed exclusively in the presence of acidic aerosol and may also be useful in assessments in determining the importance and impact of aerosol acidity on ambient SOA formation.  相似文献   

20.
A nested version of the source-oriented externally mixed UCD/CIT model was developed to study the source contributions to airborne particulate matter (PM) during a two-week long air quality episode during the Texas 2000 Air Quality Study (TexAQS 2000). Contributions to primary PM and secondary ammonium sulfate in the Houston–Galveston Bay (HGB) and Beaumont–Port Arthur (BPA) areas were determined.The predicted 24-h elemental carbon (EC), organic compounds (OC), sulfate, ammonium ion and primary PM2.5 mass are in good agreement with filter-based observations. Predicted concentrations of hourly sulfate, ammonium ion, and primary OC from diesel and gasoline engines and biomass burning organic aerosol (BBOA) at La Porte, Texas agree well with measurements from an Aerodyne Aerosol Mass Spectrometer (AMS).The UCD/CIT model predicts that EC is mainly from diesel engines and majority of the primary OC is from internal combustion engines and industrial sources. Open burning contributes large fractions of EC, OC and primary PM2.5 mass. Road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates the contributions to all primary PM components in areas near the fires. The predicted source contributions to primary PM are in general agreement with results from a chemical mass balance (CMB) model. Discrepancy between the two models suggests that further investigations on the industrial PM emissions are necessary.Secondary ammonium sulfate accounts for the majority of the secondary inorganic PM. Over 80% of the secondary sulfate in the 4 km domain is produced in upwind areas. Coal combustion is the largest source of sulfate. Ammonium ion is mainly from agriculture sources and contributions from gasoline vehicles are significant in urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号