首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental Science and Pollution Research - Bioethanol is a renewable energy source carrier mainly produced from the biomass fermentation process. Reforming of bioethanol for hydrogen production...  相似文献   

2.
Hein L  Leemans R 《Ambio》2012,41(4):341-349
The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.  相似文献   

3.
ABSTRACT

An intercomparison study has been performed with six empirical ozone interpolation procedures to predict hourly concentrations in ambient air between monitoring stations. The objective of the study is to use monitoring network data to empirically identify an improved procedure to estimate ozone concentrations at subject exposure points. Four of the procedures in the study are currently used in human exposure models (nearest monitors daily mean and maximum, regression estimate used in the U.S. Environmental Protection Agency's (EPA) pNEM, and inverse distance weighting), and two are being evaluated for this purpose (kriging in space and kriging in space and time). The study focused on spatial estimation during June 1-June 5, 1996, with relatively high observed ozone levels over Houston, Texas. The study evaluated these procedures at three types of locations with monitors of varying proximity. Results from the empirical evaluation indicate that kriging in space and time provides excellent estimates of ozone concentrations within a monitoring network, while the more often used techniques failed to capture observed pollutant concentrations. Improved estimation of pollutant concentrations within the region, and thus at subject locations, should result in improved exposure modeling.  相似文献   

4.
Abstract

The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority. Cellulosic ethanol production plants are being built in many areas of the United States to evaluate various feed-stocks and processes. The waste streams from many varying processes that are being developed contain a variety of components. Differences in ethanol generation processes and feedstocks are producing waste streams unique to biofuel production, which could be potentially harmful to the environment if adequate care is not taken to manage those risks. Waste stream management and utilization of the cellulosic ethanol process are equally important components of the development of this industry.  相似文献   

5.
In this research, low-heat alkaline pretreatment was evaluated to determine the extent to which urban landscape waste (yard waste), corn stover, and switchgrass could be codigested under conditions typical of US farm-based anaerobic digestion (AD). Waste heat from combined heat and power (CHP) units associated with AD could make such pretreatment economical. Short-term batch digestion studies and 8-week continuous-feed studies were used to screen and evaluate various pretreatment conditions. Results indicate that maple and oak leaves did not digest well, even with pretreatment. Pretreatment did improve digestion of corn leaves and stalks as well as switchgrass. However, these materials also digested reasonably well even without pretreatment. No digester operational problems were observed during continuous-feed studies of intermittently stirred bench top digesters, but optimal levels of alkali, temperature, and pretreatment time may be specific to the feedstock, particle size, and digester loading rate. Results suggest that some common lignocellulosic biomass materials, such as corn stover and switchgrass, could be successfully codigested in many existing farm-based digesters. Interestingly, without pretreatment, switchgrass digestion improved over 20-fold when digested with seed culture from a dairy digester compared to seed culture from a municipal digester, suggesting that culture acclimation could be as important as pretreatment in improving digestion of specific lignocellulosic feedstocks.  相似文献   

6.
A database of global agricultural primary production has been constructed and used to estimate its energy content. The portion of crops available for food and biofuel after postharvest losses was evaluated. The basic conditions for agriculture and plant growth were studied, to ensure sustainable scenarios regarding use of residues. The available energy contents for the world and EU27 was found to be 7,200–9,300 and 430 TWh, respectively, to be compared with food requirements of 7,100 and 530 TWh. Clearly, very little, or nothing, remains for biofuel from agricultural primary crops. However, by using residues and bioorganic waste, it was found that biofuel production could theoretically replace one-fourth of the global consumption of fossil fuels for transport. The expansion potential for global agriculture is limited by availability of land, water, and energy. A future decrease in supply of fossil energy and ongoing land degradation will thus cause difficulties for increased biofuel production from agriculture.  相似文献   

7.
This paper reports the results of research conducted for the U.S. Environmental Protection Agency in connection with the Ohio River Basin Energy Study (U.S.-EPA Grant No. 805585, Subcontract No. R805588). The purpose of the research is to estimate monetary losses to agricultural producers in the study region from airborne residuals. Estimates of physical crop losses were provided under the direction of Dr. Orie Loucks at The Institute of Ecology and were used for estimating the related monetary losses. Economic losses are defined as producer surplus losses to the agricultural sector due to reductions in productivity from airborne residuals. Research results support the following general conclusions; monetary losses to agricultural producers in the region are on the order of 12% of the present discounted value of clean air production through the year 2000. Losses from utilities alone are on the order of 4.8%. Losses are highly concentrated in the ORBES portions of Illinois, Indiana, and Ohio and primarily related to soybean and corn production. The overwhelming monetary losses are attributable to O3 concentrations in the region. Compliance and noncompliance with state implementation plans (SIP) does not significantly change the degree of monetary losses. Only high growth in electric demand produces annual losses which rise to the year 2000 and produces significantly greater losses among alternative scenarios.  相似文献   

8.
During last decades, there has been a growing interest of decreasing the environmental impact generated by humans. This situation has been approached from different perspectives being the integral use of raw materials as one of the best alternatives. It was estimated that 3.7?×?109 tonnes of agricultural residues are produced annually worldwide. Then, the integral use of feedstocks has been studied through the biorefinery concept. A biorefinery can be a promissory option for processing feedstocks in rural zones aiming to boost the techno-economic and social growth. However, many plants produced at small scale in rural zones without high industrial use contribute with residues usually not studied as raw materials for other processes. Cocoyam (Xanthosoma sagittifolium) is a plant grown extensively in tropical regions. Nigeria, China, and Ghana are the main producers with 1.3, 1.18, and 0.9 million tonnes/year, respectively. In Colombia, there are no technified crops, but it is used where it is grown mainly as animal feed. This plant consists of leaves, stem, and a tuber but the use is generally limited to the leaves, discarding the other parts. These discarded parts have great potential (lignocellulose and starch). This work proposes different processing schemes using the parts of the plant to obtain value-added products, and their techno-economic and environmental assessment. The simulation was performed with Aspen Plus and the economic package was used for the economic assessment. For the environmental assessment, Waste Algorithm Reduction of the U.S. EPA was implemented. The obtained results showed that the integral use of plants under a biorefinery scheme allows obtaining better techno-economic and environmental performance and that small-scale biorefineries can be a promissory option for boosting rural zones.  相似文献   

9.
We examine the performance of three methods to estimate the surface friction velocity and the Monin–Obukhov (MO) length in stable conditions. Estimates from these methods are compared with measurements made at two urban sites: the Wilmington site located in the middle of an urban area, and the VTMX site located on a sloping, smooth area in Salt Lake City. The first method uses the mean wind at a single height (Single U or SU), the second uses the wind speed at a single level and the temperature difference between two levels (U delta T or UDT), and the third method uses two levels of wind speed and temperature (delta U delta T or DUDT). The performance of the SU and UDT methods in estimating u* are comparable. The SU method yields better estimates of the MO length than the UDT method does. The DUDT method performs poorly in estimating both u* and L. The major conclusions of this study are that (1) measurements of mean winds and temperatures at one or two levels at an urban location can provide adequate estimates of micrometeorological variables required in modeling dispersion in the stable boundary layer, and (2) methods based on using differences in temperatures and velocities between two levels can provide unreliable estimates of these variables because these differences can be overwhelmed by inevitable uncertainties in the measurement of mean variables.  相似文献   

10.

A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.

  相似文献   

11.
In this paper, a brief overview is presented of natural gas as a fuel resource with subsequent carbon capture and re-use as a means to facilitate reduction and eventual elimination of man-made carbon emissions. A particular focus is shale gas and, to a lesser extent, methane hydrates, with the former believed to provide the most reasonable alternative as a transitional fuel toward a low-carbon future. An emphasis is placed on the gradual elimination of fossil resource usage as a fuel over the coming 35 to 85 years and its eventual replacement with renewable resources and nuclear power. Furthermore, it is proposed that synthesis of chemical feedstocks from recycled carbon dioxide and hydrogen-rich materials should be undertaken for specific applications in the transport sector which require access to high energy density fuels. To achieve the latter, carbon dioxide capture is imperative and possible synthetic routes for chemical feedstock production are briefly reviewed.  相似文献   

12.
Assessing the influence of abatement efforts and other human activities on ozone levels is complicated by the atmosphere's changeable nature. Two statistical methods, the dynamic linear model (DLM) and the generalized additive model (GAM), are used to estimate ozone trends in the eastern United States and to adjust for meteorological effects. The techniques and resulting estimates are compared and contrasted for four monitoring locations chosen through principal components analysis to represent regional patterns of ozone concentrations. After adjustment for meteorological influence, overall downward trends are evident at all four locations from 1997 to 2004. The results indicate that the two methods’ estimates of ozone changes agree well. When such estimates are needed quickly, or when many similar, but separate analyses are required, the ease of implementation and relative simplicity of the GAMs are attractive. The DLMs are much more flexible, readily addressing such issues as autocorrelation, the presence of missing values, and estimation of long-term trends or cyclical patterns. Implementation of DLMs, however, is typically more difficult, and especially in the absence of an experienced practitioner, they may be better reserved for in-depth analyses.  相似文献   

13.
Polychlorinated biphenyls (PCBs) were banned in the United States in 1979, and since then a significant decline in their release to the environment has been observed. This decline has now reached a plateau. Several new regulatory programs have been put in place to further reduce PCB emissions/releases. However, our ability to measure the effectiveness of these regulatory/voluntary programs and to support regional fate/transport and source/receptor modeling efforts depend on reliable emission information. In this study, we attempt to improve the emission inventory for PCBs by compiling and analyzing the multimedia total PCB emission/release data reported for the U.S Great Lakes states for each year from 1990 to 2000. Although Toxic Release Inventory (TRI), National Emissions Inventory (NEI), Great Lakes Regional Air Toxic Emissions Inventory (GLRATEI), and Integrated Atmospheric Deposition Network (IADN) data formed the basis of estimating air emissions, we used the TRI, National Response Center (NRC), and PCB transformer inventory data to estimate PCB releases to land. We used the Permit Compliance System and NRC data to obtain estimates of PCB discharges to water systems in the Great Lakes states. The Remedial Action Plans for each area of concern were the primary source for estimating PCB loads of dredged sediments. On the basis of the NEI, IADN, and GLRATEI data, the total air emissions within the decade were approximately 126 t. The regionwide discharges to water systems and releases to land in the form of landfills and accidental spills in 1990-2000 were estimated as approximately 170 and 3225 t, respectively. We estimated that approximately 1.3 million t of PCB-contaminated sediment were removed or targeted for removal in five lakes of the U.S. portion of the Great Lakes basin. We stress that these estimates were based on reported amounts and the unreported PCB releases/emissions could result in significantly higher estimates.  相似文献   

14.
Abstract

Daily atmospheric concentrations of sulfate collected at six locations in the northeastern United States are regressed against meteorological factors, ozone, seasonal cycles, and time in order to determine if a significant trend in sulfate can be detected. The data used in this analysis were collected during the Sulfate Regional Experiment (SURE, 1977-1978) and the Eulerian Model Evaluation Field Study (EMEFS, 1988-1989). Ozone, specific humidity, and seasonal terms (reflecting the potential of the atmosphere for oxidation of sulfur dioxide) emerged as important explanatory variables. After accounting for the variability explained by environmental factors, the median estimated change in sulfate concentration from the six locations over the 11-year period is -22% (or -28% if ozone is not used as an explanatory variable). Although there are wide variations among locations, these changes are commensurate with an estimated 25% decline in sulfur emissions in the northeastern U.S. during the same period. These analyses provide insight into methods for detecting reductions in sulfate that may be expected to occur as a result of the Clean Air Act Amendments of 1990. Uncertainties in the estimates, with consideration of serial correlation in the data, imply a minimum detectable reduction of 10% using this modeling procedure with similar data availability.  相似文献   

15.
Past attempts to measure the economic consequences of ozone on agriculture have been based on limited plant science information. This paper reports on an economic assessment of ozone on U.S. agriculture using recent crop response data from the National Crop Loss Assessment Network (NCLAN). The results are derived from a U.S. agricultural sector model that includes major crop and livestock production as well as domestic consumption, livestock feeding and export uses. The economic effects of four hypothetical ambient ozone levels are investigated. The analysis Indicates that the benefits to society of moderate (25%) ozone reductions are approximately $1.7 billion. A 25% Increase in ozone pollution results in costs (negative benefits) of $2.1 billion. These estimates do not reflect compliance costs of achieving the ozone changes and hence are not net benefits.  相似文献   

16.
Extensive production of ethanol and vehicular use of this biofuel have recently been suggested as possible sources of elevated volatile organic carbon (VOC) in rain in Brazil (Campos, M.L.A.M., Nogueira, R.F.P., Dametto, P.R., Francisco, J.G., Coelho, C.H., 2007. Dissolved organic carbon in rainwater: glassware decontamination and sample preservation and volatile organic carbon. Atmos. Environ. 41, 8924–8931; Coelho, C.H., Francisco, J.G., Nogueira, R.F.P., Campos, M.L.A.M., 2008. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning. Atmos. Environ. 42, 7115–7121). Furthermore, these studies suggested that the global flux of rainwater dissolved organic carbon (DOC) may be underestimated since most DOC analytical methods do not measure VOC. The current study examined rain VOC in Wilmington, North Carolina USA in order to assess the importance of rain VOC in a location that does not have the unique conditions of ethanol production and usage found in Brazil. VOC was observed in one of six whole rain events analyzed in the current study. This event had an air mass back trajectory that originated over the Midwestern USA, the primary region where ethanol is produced and used as fuel. The other five storms which had no influence from the central US prior to arrival at the rain collection site had non-detectable VOC suggesting that air mass back trajectory has a dramatic impact on the VOC content of rainwater. VOC was also observed in the initial 1 mm of rain from two of these events but was not detectable in the whole event samples suggesting VOC is efficiently washed out of the atmosphere and is not rapidly resupplied in rainwater at this location. Considering the results of the previous Brazilian studies and the current study, and the likelihood of increased global production and consumption of ethanol based biofuels, it is imperative that future measurements of rainwater DOC include measurement of VOC. Monitoring changes in the VOC contribution to rain DOC will provide an assessment of the impact of increased ethanol biofuel usage on rainwater composition and allow for future refinements of global rainwater DOC flux estimates.  相似文献   

17.
Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.  相似文献   

18.
19.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


20.
Abstract

Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号