首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The present study demonstrates comparison of Cr accumulatingpotential by the plants of Najas indica Cham. (submerged),Vallisneria spiralis L. (rooted submerged) and Alternanthera sessilis R. Br. (rooted emergent) under repeatedmetal exposure and its effect on chlorophyll and protein concentrations. These plants were treated with different concentrations of Cr under repeated exposure in controlled laboratory conditions to assess the maximum metal accumulationpotential. The plants of V. spiralis accumulated significantly high amount of Cr under laboratory conditions incomparison to N. indica and A. sessilis. The maximumaccumulation of 1378, 458 and 201 g g-1 dw Cr was found in the leaves of V. spiralis, N. indica and A. sessilis, respectively at 8 mg L-1 after 9 day of Cr exposure. These plants have shown a decrease in chlorophyll andprotein concentrations with increase in Cr concentrations. In view of high accumulation of Cr in V. spiralis, the plantswere treated with different concentrations of tannery effluent collected from Common Effluent Treatment Plant, Unnao (UP). Theplants of V. spiralis treated with 100% tannery wastewatershowed the maximum accumulation (57.5 g g-1 dw) of Cr in the roots after 10 days of exposure. The plants were foundeffective in removing Cr from solution and tannery effluent.  相似文献   

2.
Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns. Collections were co-located with plots where epiphytic macrolichen communities are used for estimating ammonia (NH3) deposition. Tissue N ranged from 0.6% to 2.11% with the highest values occurring in the southwestern Sierra Nevada (range: 1.38 to 2.11). Tissue N at 17 plots was elevated, as defined by a threshold concentration of 1.03%. Stepwise regression was used to determine the best predictors of tissue N from among a variety of environmental variables. The best model consisted only of longitude (r 2 = 0.64), which was reflected in the geographic distribution of tissue values: the southwestern Sierra Nevada, the high Sierras near the Tahoe Basin, and the Modoc Plateau, are three apparent N hotspots arranged along the tilted north–south axis of the study area. Withholding longitude and latitude, the best regression model suggested that NH3 estimates and annual number of wetdays interactively affect N accumulation (r 2 = 0.61; % N ∼ NH3 + wetdays + (NH3 × wetdays)). We did not expect perfect correspondence between tissue values and NH3 estimates since other N pollutants also accumulate in the lichen thallus. Additionally, other factors potentially affecting N content, such as growth rate and leaching, were not given full account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号