首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional pesticides (TP) often do not adhere tightly to crop foliage. They can easily enter the surrounding environment through precipitation and volatilization. This can result in the pollution of the surrounding soil, water, and air. To reduce pesticide pollution, we developed a loss-control pesticide (LCP) by adding attapulgite with a nano networks structure fabricated using high energy electron beam (HEEB) irradiation and hydrothermal treatment to TP. HEEB irradiation effectively dispersed originally aggregated attapulgite through modified thermal, charge, and physical effects. Hydrothermal treatment further enhanced the dispersion of attapulgite to form nano porous networks via thermal and wet expansion effects, which are beneficial for pesticide binding. An LCP has improved retention on crop leaf surfaces. It has a higher adhesion capacity, reduced leaching and volatilization, and extended residual activity compared with the TP formulation. The treatment increases the residual activity of pesticides on crop foliage and decreases environmental pollution.  相似文献   

2.
Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to Kh. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make decision about agricultural practices such as incorporation or for the estimation of overall pesticide volatilization rates, and it holds promise for time specific dynamics.  相似文献   

3.
Fenoll J  Ruiz E  Flores P  Hellín P  Navarro S 《Chemosphere》2011,85(8):1375-1382
Laboratory and field studies were conducted in order to determine the leaching potential of eight pesticides commonly used during pepper cultivation by use of disturbed soil columns and field lysimeters, respectively. Two soils with different organic matter content (soils A and B) were used. Additionally, soil B was amended with compost (sheep manure). The tested compounds were cypermethrin, chlorpyrifos-methyl, bifenthrin, chlorpyrifos, cyfluthrin, endosulfan, malathion and tolclofos-methyl. In soil B (lower organic matter content), only endosulfan sulphate, malathion and tolclofos-methyl were found in leachates. For the soil A (higher organic matter content) and amended soil B, pesticide residues were not found in the leachates. In addition, this paper reports on the use of common agronomic practices (solarization and biosolarization) to enhance degradation of these pesticides from polluted soil A. The results showed that both solarization and biosolarization enhanced the degradation rates of endosulfan, bifenthrin and tolclofos-methyl compared with the control. Most of the studied pesticides showed similar behavior under solarization and biosolarization conditions. However, chlorpyrifos was degraded to a greater extent in the solarization than in biosolarization treatment. The results obtained point to the interest in the use of organic amendment in reducing the pollution of groundwater by pesticide drainage and in the use of solarization and biosolarization in reducing the persistence of pesticides in soil.  相似文献   

4.
The application of pesticides to cultivated soil and crops is a major source of pesticides that are found in the atmosphere and which are transported and deposited to land and water surfaces over distances that range from local to global scales. In this first part of a two-part paper, a pesticide emission model (PEM) is proposed for estimating the exchange with the atmosphere of pesticides applied to soils and crops. The basis of PEM is a one-dimensional numerical solution of the dynamic equations describing the advection and diffusion of heat, moisture and pesticide within the soil column and exchange with the atmosphere through heat transfer, evapotranspiration and volatilization. The soil model is coupled with an atmospheric surface layer and a simple canopy model that includes: the interception of sprayed pesticide by the crop foliage; the partitioning of pesticide within a wet or dry canopy; and, the volatilization of pesticide to the atmosphere or the wash-off to the soil by precipitation. The finite-element technique used for solving the model equations is mass conservative and multi-year periods of simulation are possible while maintaining a proper mass balance of pesticide in the soil. The model is solved using 1200 s time-steps and 49 variably spaced levels in the soil to a depth of 2 m, with the highest vertical resolution (0.002 m spacing) near the soil surface. Similarity theory is used to parameterize the fluxes of heat, moisture and pesticide through the atmospheric surface layer with hourly meteorology being provided by either climate station observations or a meteorological model. In the second part to this paper, the results of an evaluation of PEM are reported.  相似文献   

5.
In the first part of the paper, the development of a numerical pesticide emission model (PEM) is described for predicting the volatilization of pesticides applied to agricultural soils and crops through soil incorporation, surface spraying, or in the furrow at the time of planting. In this paper the results of three steps toward the evaluation of PEM are reported. The evaluation involves: (i) verifying the numerical algorithms and computer code through comparison of PEM simulations with an available analytical solution of the advection/diffusion equation for semi-volatile solutes in soil; (ii) comparing hourly heat, moisture and emission fluxes of trifluralin and triallate modeled by PEM with fluxes measured using the relaxed eddy-accumulation technique; and (iii) comparison of the PEM predictions of persistence half-life for 29 pesticides with the ranges of persistence found in the literature. The overall conclusion from this limited evaluation study is that PEM is a useful model for estimating the volatilization rates of pesticides from agricultural soils and crops. The lack of reliable estimates of chemical and photochemical degradation rates of pesticide on foliage, however, introduces large uncertainties in the estimates from any model of the volatilization of pesticide that impacts the canopy.  相似文献   

6.
The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone.  相似文献   

7.
Sorption kinetics and its effects on retention and leaching.   总被引:1,自引:0,他引:1  
Sorption of pesticides to substrates used in biopurification systems is important as it controls the system's efficiency. Ideally, pesticide sorption should occur fast so that leaching of the pesticide in the biopurification system is minimized. Although modeling of pesticide transport commonly assumes equilibrium, this may not always be true in practice. Sorption kinetics have to be taken into account. This study investigated the batch sorption kinetics of linuron, isoproturon, metalaxyl, isoxaben and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, sandy loam soil, coconut chips, garden waste compost and peat mix. The first-order sorption kinetics model was fitted to the observed pesticide concentrations versus time resulting in an estimated kinetic rate constant alpha. Sorption appeared to be fast for the pesticides linuron and isoxaben, pesticides which were classified as immobile, while less mobile pesticides displayed an overall slower sorption. However, the substrate does not seem to be the main parameter influencing the sorption kinetics. Coconut chips, which is a substrate with a high organic matter content showed slow sorption for most of the pesticides. The effect of different estimated alpha values on the breakthrough of pesticides through a biopurification system was evaluated using the HYDRUS 1D model. Significant differences in leaching behavior were observed as a result of the obtained differences in sorption kinetics.  相似文献   

8.
BACKGROUND AND OBJECTIVES: Among the factors affecting the environmental fate of surface-applied pesticides several biological as well as abiotic factors, such as volatilization and photochemical transformations are of particular interest. Whereas reliable measurement methods and models for estimating direct photodegradation are already available for the compartments of water and atmosphere and individual subprocesses have already been described in detail, there is still a need for further elucidation concerning the key processes of heterogeneous photodegradation of environmental chemicals on surfaces. METHODS: In order to systematically examine the direct and indirect photodegradation of 14C-labeled pesticides on various surfaces and their volatilization behavior, a new laboratory device ('photovolatility chamber') was designed according to US EPA Guideline 161-3. Model experiments under controlled conditions were conducted investigating the impact of different surfaces, i.e. glass, soil dust and radish plants, and environmental factors, i.e. irradiation and atmospheric ozone (O3), on the photodegradation and volatilization of surface-deposited [phenyl-UL-14C]parathion-methyl (PM). RESULTS AND DISCUSSION: Depending on the experimental conditions, parathion-methyl was converted to paraoxon-methyl, 4-nitrophenol, unknown polar products and 14CO2. With respect to the direct photodegradation of PM (experiments without O3), the major products were polar compounds and 14CO2, due to the rapid photochemical mineralization of 4-nitrophenol to 14CO2. Paraoxon-methyl and 4-nitrophenol formation was mainly mediated by the combination of light, O3, and *OH radicals. In radish experiments PM photodegradation was presumably located in the cuticle compartment, which exhibited a sensitized photodegradation, as more unknown products were yielded compared to the glass and soil dust experiments. This could be explained by intensifying the inherent PM degradation in the dark with the same product spectrum. Due to photochemical product formation, which is an antagonistic process to the volatilization of parent compound, the volatilization of unaltered parathion-methyl from each surface generally decreased in the presence of light, particularly in combination with increasing O3 concentrations and *OH radical production rates. CONCLUSION: First results demonstrated that the photovolatility chamber provides a special tool for the systematic evaluation of (a) photodegradation of surface-located pesticide residues, i.e. measuring qualitative aspects of direct and indirect photodegradation together with relative photodegradation rates, and (b) volatilization of pesticides on surfaces by including and optionally varying relevant parameters such as light, atmospheric O3 concentration, surface temperature, air temperature, air flow rate. OUTLOOK: The experimental facility represents an important complement to lysimeter and field studies, in particular for experiments on the volatilization of pesticides using the wind tunnel system. With the photovolatility chamber special experiments on photodegradation, volatilization and plant uptake can be conducted to study key processes in more detail and this will lead to a better understanding of the effects of certain environmental processes on the fate of released agrochemicals contributing to an improved risk assessment.  相似文献   

9.
In this study, preliminary tests were conducted aiming to validate the use of ceramic porous cup for collecting soil water samples and monitoring pesticides contents, as usually made for nitrates. Interactions between porous cup and pesticides were examined under different experimental conditions for three herbicides (atrazine, isoproturon, 2,4-D) and one insecticide (carbofuran).

The results showed that ceramic was not inert for pesticides : as much as 80% of the applied pesticide could be retained during the flowing of the first tenth milliliters of solution. Interactions were attributed to sorption and “screening” of molecules by the porous walls and were related to the ionic character of pesticides. However, retention was not irreversible, since pesticides were quickly released by rinsing with distilled water.

After these tests, porous ceramic cups could be considered as suitable samplers for pesticide determinations in soil solution, contingent on gaining further informations about soil - porous cup - pesticide interactions.  相似文献   


10.
Solla SR  Martin PA 《Chemosphere》2011,85(5):820-825
Reptiles often breed within agricultural and urban environments that receive frequent pesticide use. Consequently, their eggs and thus developing embryos may be exposed to pesticides. Our objectives were to determine (i) if turtle eggs are capable of absorbing pesticides from treated soil, and (ii) if pesticide absorption rates can be predicted by their chemical and physical properties. Snapping turtle (Chelydra serpentina) eggs were incubated in soil that was treated with 10 pesticides (atrazine, simazine, metolachlor, azinphos-methyl, dimethoate, chlorpyrifos, carbaryl, endosulfan (I and II), captan, and chlorothalonil). There were two treatments, consisting of pesticides applied at application rate equivalents of 1.92 or 19.2 kg a.i/ha. Eggs were removed after one and eight days of exposure and analyzed for pesticides using gas chromatography coupled with a mass selective detector (GC-MSD) or high performance liquid chromatography (HPLC). Absorption of pesticides in eggs from soil increased with both magnitude and duration of exposure. Of the 10 pesticides, atrazine and metolachlor generally had the greatest absorption, while azinphos-methyl had the lowest. Chlorothalonil was below detection limits at both exposure rates. Our preliminary model suggests that pesticides having the highest absorption into eggs tended to have both low sorption to organic carbon or lipids, and high water solubility. For pesticides with high water solubility, high vapor pressure may also increase absorption. As our model is preliminary, confirmatory studies are needed to elucidate pesticide absorption in turtle eggs and the potential risk they may pose to embryonic development.  相似文献   

11.
Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a “Wet” forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of “Wet” forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.  相似文献   

12.
Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs approximately 3.0 and approximately 7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH approximately 7.0 than at pH approximately 3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH approximately 7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH approximately 3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH approximately 3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars.  相似文献   

13.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

14.
Pesticide soil/solution distribution coefficients ( Kd values), commonly referred to as pesticide soil sorption values, are utilized in computer and decision aid models to predict soil mobility of the compounds. The values are specific for a given chemical in a given soil sample, normally taken from surface soil, a selected soil horizon, or at a specific soil depth, and are normally related to selected soil properties. Pesticide databases provide Kd values for each chemical, but the values vary widely depending on the soil sample on which the chemicals were tested. We have correlated Kd values reported in the literature with the reported soil properties for an assortment of pesticides in an attempt to improve the accuracy of a Kd value for a specific chemical in a soil with known soil properties. Mathematical equations were developed from regression equations for the related properties. Soil properties that were correlated included organic matter content, clay mineral content, and/or soil pH, depending on the chemical properties of the pesticide. Pesticide families for which Kd equations were developed for 57 pesticides include the following: Carboxy acid, amino sulfonyl acid, hydroxy acid, weakly basic compounds and nonionizable amide/anilide, carbamate, dinitroaniline, organochlorine, organophosphate, and phenylurea compounds. Mean Kd values for 32 additional pesticides, many of which had Kd values that were correlated with specific soil properties but for which no significant Kd equations could be developed are also included.  相似文献   

15.
The efficiency of a biopurification system, developed to treat pesticide contaminated water, is to a large extent determined by the chemical and hydraulic load. Insight into the behaviour of pesticides under different fluxes is necessary. The behaviour of metalaxyl, bentazone, linuron, isoproturon and metamitron was studied under three different fluxes with or without the presence of pesticide-primed soil in column experiments. Due to the time-dependent sorption process, retention of the pesticides with intermediate mobility was significantly influenced by the flux. The higher the flux, the slower pesticides will be sorbed, which resulted in a lower retention. Degradation of the intermediate mobile pesticides was also submissive to variations in flux. An increase in flux, led to a decrease in retention, which in turn decreased the opportunity time for biodegradation. Finally, the presence of pesticide-primed soil was only beneficial for the degradation of metalaxyl.  相似文献   

16.
Biochars’ properties will change after application in soil due to the interactions with soil constituents, which would then impact the performance of biochars as soil amendment. For a better understanding on these interactions, two woody biochars of different surface areas (SA) were physically treated with aluminum oxide (Al-oxide) to investigate its potential influence on biochars’ sorption property. Both the micropore area and mesopore (17~500 Å in diameter) area of the low-SA biochar were enhanced by at least 1.5 times after treatment with Al-oxide, whereas the same treatment did not change the surface characteristics of the high-SA biochar due partly to its well-developed porosity. The enhanced sorption of the pesticide isoproturon to the Al-oxide-treated low-SA biochar was observed and is positively related to the increased mesopore area. The desorption hysteresis of pesticide from the low-SA biochar was strengthened because of more pesticide molecules entrapped in the expanded pores by Al-oxide. However, no obvious change of pesticide sorption to the high-SA biochar after Al-oxide treatment was observed, corresponding to its unchanged porosity. The results suggest that the influence of Al-oxide on the biochars’ sorption property is dependent on their porosity. This study will provide valuable information on the use of biochars for reducing the bioavailability of pesticides.  相似文献   

17.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

18.
Paraíba LC  Kataguiri K 《Chemosphere》2008,73(8):1247-1252
We presented a model that estimates the bioconcentration factor (BCF) of pesticides in potatoes supposing that the pesticide in the soil solution is absorbed by the potato by passive diffusion, following Fick's second law. The pesticides in the model are nonionic organic substances, traditionally used in potato crops that degrade in the soil according to a first-order kinetic equation. This presents an expression that relates BCF with the pesticide elimination rate by the potato, with the pesticide accumulation rate within the potato, with the rate of growth of the potato and with the pesticide degradation rate in the soil. BCF was estimated supposing steady state equilibrium of the quotient between the pesticide concentration in the potato and the pesticide concentration in the soil solution. It is suggested that a negative correlation exists between the pesticide BCF and the soil sorption partition coefficient. The model was built based on the work of Trapp et al. [Trapp, S., Cammarano, A., Capri, E., Reichenberg, F., Mayer, P., 2007. Diffusion of PAH in potato and carrot slices and application for a potato model. Environ. Sci. Technol. 41 (9), 3103-3108], in which an expression to calculate the diffusivity of persistent organic substances in potatoes is presented. The model consists in adding to the expression of Trapp et al. [Trapp, S., Cammarano, A., Capri, E., Reichenberg, F., Mayer, P., 2007. Diffusion of PAH in potato and carrot slices and application for a potato model. Environ. Sci. Technol. 41 (9), 3103-3108] the hypothesis that the pesticide degrades in the soil. The value of BCF suggests which pesticides should be monitored in potatoes.  相似文献   

19.
The influence of organic matter and clay contents on headspace solid phase microextraction (HS-SPME) determination of triazine and organophosphorus pesticides in different soils was studied. The results of the study showed that content of soil organic matter dominantly participated in sorption of triazines (simazine, atrazine and prometryn) to soil, while sorption of organophosphorus pesticides (phorate and tebupirimfos) could not be explained only by contents of dominant soil sorption components (soil organic matter and clay). Sorption of all pesticides studied to different soil types was similar at their lower concentrations while the influence of soil composition was expressed at higher concentration levels. Except for phorate, the obtained sorption trends were different from those obtained by direct SPME mode (DM-SPME) and exhaustive liquid-solid extraction (LSE) method. These results indicated that most likely co-extractants from the analyzed medium complicated evaporation and diffusion of the pesticides to the PDMS fiber during HS-SPME sampling.  相似文献   

20.
Degradation of two model insecticides, diazinon and malathion, and their degradation products 2-isopropyl-6-methyl-4-pyrimidinol--IMP (diazinon hydrolysis product) and malaoxon (malathion oxidation product) was compared and studied in the environment. The pesticides and their metabolites were extracted from samples (water, soil, chicory) with ethyl acetate and subsequently the extracts were analyzed by GC/FID. It was shown that hydrolysis is the major process in the degradation of these pesticides in water. In fact, 95% of diazinon was degraded, and only 10% of malathion was oxidised. In soil 30% of diazinon exposed to the sunlight was decomposed by photolysis, whereas in soil left in the darkness no degradation products were observed. In soil left under environmental conditions, 90% of diazinon was degraded and 40% from its initial concentration was transformed into IMP. The concentrations of the pesticides after 21 days on chicory were under maximal allowable concentration, which is 0.5 ppm for malathion and for diazinon. The concentration of malaoxon was more than twice as high as the allowable value, which is for the sum of malathion and malaoxon 3 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号