首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compares the performances of fern and plastic chips as packing media for the biofiltration of a styrene-laden waste gas stream emitted in a plant for the manufacture of plastic door plates. Fern chips (with a specific surface area of 1090 m2 m?3) and plastic chips (with a specific surface area of 610 m2 m?3) were packed into a pilot-scale biotrickling filter with a total medium volume of 50 L for the performance test. Field waste gas with styrene concentrations in the range of 161–2390 mg Am?3 at 28–30 °C) was introduced to the bed and a fixed empty-bed retention time (EBRT) of 21 sec, a volumetric gas flow rate of 8.57 m3 hr?1, and superficial gas velocity of 53.6 m hr?1 were maintained throughout the experimental period. Nutrients containing metal salts, nitrogen, phosphorus, and milk were supplemented to the filters for maintaining the microbial activities. Results reveal that the biotrickling filter developed in this study had the highest styrene monomer (SM) elimination capacities (170 g m?3 hr?1 for fern-chip packing and 300 g m?3 hr?1 for plastic-chip packing) among those cited in the literature. The plastic medium is a favorable substitute for endangered fern chips. The thermal-setting nature of plastic chips limits their recycle and reuse as raw materials, and the study provides an opportunity for the utilization of the materials.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration has a great potential for the degradation of gas-borne styrene and total hydrocarbon (THC) removal efficiency of around 80%. The objective of this research was to compare the performances of fern chips and a kind of plastic chips as packing media for biofiltration of the styrene-laden waste gas stream emitted from cutting operations of stripes of premixed unsaturated polyester (UP) and styrene paste before hot-pressing operations for making plastic door plates. From a practical point of view, the plastic medium can be a good substitute medium for fern chips, which has been declared as a protected plant. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

2.
An experimental study was conducted in order to determine the relationship of nitric oxide (NO) consumption to water-filled pore space in soil. A test system that included the capability to blend gases, test soil samples, and analyze off-gases was used to conduct the study. The experimental set consisted of three replicates at five different levels of soil water content and three different levels of soil nitrogen in a sandy loam soil: unamended soil, soil fertilized at 56.2 kg N per ha (50 lb N acre(-1)), and soil fertilized at 112.3 kg N per ha (100 lb N acre(-1)). The average NO consumption rates were 7.1x10(-13) g-NO cm(-3) soil, 3.5x10(-11) g-NO cm(-3) soil, and 1.5x10(-10) g-NO cm(-3) soil, respectively.  相似文献   

3.
Determining the amount and rate of degradation of toxic pollutants in soil and groundwater is difficult and often requires invasive techniques, such as deploying extensive monitoring well networks. Even with these networks, degradation rates across entire systems cannot readily be extrapolated from the samples. When organic compounds are degraded by microbes, especially nitrifying bacteria, oxides or nitrogen (NOx) are released to the atmosphere. Thus, the flux of nitric oxide (NO) from the soil to the lower troposphere can be used to predict the rate at which organic compounds are degraded. By characterizing and applying biogenic and anthropogenic processes in soils the rates of degradation of organic compounds. Toluene was selected as a representative of toxic aromatic compounds, since it is inherently toxic, it is a substituted benzene compound and is listed as a hazardous air pollutant under Section 12 of the Clean Air Act Amendments of 1990. Measured toluene concentrations in soil, microbial population growth and NO fluxes in chamber studies were used to develop and parameterize a numerical model based on carbon and nitrogen cycling. These measurements, in turn, were used as indicators of bioremediation of air toxic (i.e. toluene) concentrations. The model found that chemical concentration, soil microbial abundance, and NO production can be directly related to the experimental results (significant at P < 0.01) for all toluene concentrations tested. This indicates that the model may prove useful in monitoring and predicting the fate of toxic aromatic contaminants in a complex soil system. It may also be useful in predicting the release of ozone precursors, such as changes in reservoirs of hydrocarbons and oxides of nitrogen. As such, the model may be a tool for decision makers in ozone non-attainment areas.  相似文献   

4.
The catalytic reduction of NOx with NH3 on alumina supported Fe-Cr-V (18/1/1 atomic ratios) oxides and Fe-V (1/1 atomic ratio) oxides in simulated flue gas has been investigated. Preliminary experimental results indicate that both show exceptional promise as sulfur-resistant and active catalysts for the control of NOx in power plant exhaust emissions.  相似文献   

5.
采用自行研制的生物转鼓过滤器(RDB)反硝化净化NO。结果表明,在实验温度为25~30℃、pH为7.0~7.5、转鼓转速为1.0r/min、空床停留时间(EBRT)为86.40s、营养液用量为5.0L、营养液更换频率为0.2L/d的条件下,RDB在30d内完成挂膜;RDB稳定运行期间,当NO进气质量浓度为90~433mg/m3时,NO去除率维持在42.9%~85.2%,平均去除负荷为10.40g/(m3.h);转鼓转速决定了生物膜表面的更新速率和液膜厚度,当转速为0.5r/min时,NO去除率达到最大值(75.0%);将营养液用量控制在1.3~3.0L较为合理;EBRT是决定反硝化效率的重要因素,当EBRT为345.60s时,NO去除率不受其进气浓度的影响,且去除率高达95%以上,当EBRT为43.20s、NO进气质量浓度从98mg/m3增加到1095mg/m3时,NO去除率从62.5%下降到30.7%,当进气负荷为50.00g/(m3.h)时,NO去除负荷达到最大值(27.50g/(m3.h))。  相似文献   

6.
The emission of NO was parameterized using empirical relationships with landuse type, fertilization rate and soil temperature. Eight landuse types (including four arable lands) were considered. Fertilization rates were distinguished for different regions and crops. A typical summer period of July in 1999 was chosen for detailed calculations. The total NO emission in the July is 141.1 Gg N, with 73.7% from arable lands and 22.0% from grasslands. The highest emission intensity can be more than 40 ng N m(-2) s(-1) in the heavily fertilized North China Plain, and the average of the whole lands is 6.5 ng N m(-2) s(-1). The annual emission was roughly estimated to be 657 Gg N, about 11.7% of the global total (5600 Gg N, reported by IPCC in 2000), and about 12.5% of the anthropogenic origin in China. Our results were compared with some earlier findings, and uncertainties were discussed.  相似文献   

7.
Unraveling the source of nitric oxide emission during nitrification.   总被引:1,自引:0,他引:1  
Nitric oxide production was measured during nitrification in a laboratory-scale bioreactor, operated at conditions relevant to municipal nitrifying wastewater treatment plants. This study aims to determine which type of microorganism and which metabolic pathway is responsible for nitric oxide emission during nitrification. Simulation studies were used to identify which pathway is the main source of nitric oxide emission, based on the following three hypothetical pathways for nitric oxide emission: (a) nitrification, (b) denitrification by ammonia-oxidizing bacteria with ammonium as electron donor, and (c) heterotrophic denitrification. The results of the study suggest that, in a nitrifying reactor treating wastewater containing solely ammonium and nutrients, denitrification by ammonia-oxidizing bacteria is the main nitric-oxide-producing pathway. During the experiments, 0.025% of the treated ammonium is emitted as nitric oxide, independent of the aeration rate imposed. Nitrite presence and oxygen limitation were found to increase the nitric oxide emission.  相似文献   

8.
Direct decompositions of nitric oxide (NO) by La0.7Ce0.3SrNiO4, La0.4Ba0.4Ce0.2SrNiO4, and Pr0.4Ba0.4Ce0.2SrNiO4 are experimentally investigated, and the catalysts are tested with different operating parameters to evaluate their activities. Experimental results indicate that the physical and chemical properties of La0.7Ce0.3SrNiO4 are significantly improved by doping with Ba and partial substitution with Pr. NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4 are 32% and 68%, respectively, at 400 °C with He as carrier gas. As the temperature is increased to 600 °C, NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4, respectively, reach 100% with the inlet NO concentration of 1000 ppm while the space velocity is fixed at 8000 hr?1. Effects of O2, H2O(g), and CO2 contents and space velocity on NO decomposition are also explored. The results indicate that NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4, respectively, are slightly reduced as space velocity is increased from 8000 to 20,000 hr?1 at 500 °C. In addition, the activities of both catalysts (La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4) for NO decomposition are slightly reduced in the presence of 5% O2, 5% CO2, or 5% H2O(g). For durability test, with the space velocity of 8000 hr?1 and operating temperature of 600 °C, high N2 yield is maintained throughout the durability test of 60 hr, revealing the long-term stability of Pr0.4Ba0.4Ce0.2SrNiO4 for NO decomposition. Overall, Pr0.4Ba0.4Ce0.2SrNiO4 shows good catalytic activity for NO decomposition.

Implications: Nitrous oxide (NO) not only causes adverse environmental effects such as acid rain, photochemical smog, and deterioration of visibility and water quality, but also harms human lungs and respiratory system. Pervoskite-type catalysts, including La0.7Ce0.3SrNiO4, La0.4Ba0.4Ce0.2SrNiO4, and Pr0.4Ba0.4Ce0.2SrNiO4, are applied for direct NO decomposition. The results show that NO decomposition can be enhanced as La0.7Ce0.3SrNiO4 is substituted with Ba and/or Pr. At 600 °C, NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4 reach 100%, demonstrating high activity and good potential for direct NO decomposition. Effects of O2, H2O(g), and CO2 contents on catalytic activities are also evaluated and discussed.  相似文献   

9.
This study characterized the changes of nitric oxide (NO) production during the growth of Microcystis aerugrinosa, a cyanobacterium which usually cause cyanobacterial blooms. Results showed a drastic NO release accompanying with cell density and Chl-a content sharp rises when M. aerugrinosa grew from fifth day to sixth day. Moreover, high N:P ratio accelerated the cyanobacterial growth and NO burst. Sodium nitroprusside, an exogenous NO donor, promoted M. aerugrinosa growth with the optimal concentration of 0.1 mg/L. Experiments by supplementing with sodium nitrite and l-arginine demonstrated NO production in M. aerugrinosa cells was mainly through nitrate reductase (NR) pathway while minorly through NO synthase pathway. All these data suggested M. aerugrinosa produced increasing NO during its growth mainly by NR pathway, during which NO positively regulated the growth of M. aerugrinosa.  相似文献   

10.
CuCoOx/TiO2催化氧化NO性能研究   总被引:2,自引:0,他引:2  
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能。XRD、TPR和BET分析表明,350℃焙烧的催化剂具有CuCo2O4尖晶石结构,比表面积大,对NO的氧化效果好。在空速为5000h^-1,NO进口浓度500mg/m^3,含氧量10%的条件下,反应温度300℃时NO转化率可达79.5%,250℃时NO转化率接近50%。该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活。该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理。  相似文献   

11.
The development of a thermophilic biotrickling ?lter (BTF) system to inoculate a newly isolated strain of Chelatococcus daeguensis TAD1 for the effective treatment of nitric oxide (NO) is described. A bench-scale BTF was run under high concentrations of NO and 8% O2 in thermophilic aerobic environment. A novel aerobic denitrifier Chelatococcus daeguensis TAD1 was isolated from the biofilm of an on-site biotrickling filter and it showed a denitrifying capability of 96.1% nitrate removal rate in a 24 h period in aerobic environment at 50 °C, with no nitrite accumulation. The inlet NO concentration fluctuated between approximately 133.9 and 669.6 mg m-3 and kept on a steady NOx removal rate above 80% in an oxygen stream of 8%. The BTF system was able to consistently remove 80–93.7% NO when the inlet NO was 535.7 mg m-3 in an oxygen stream of 2–20%. The biological removal efficiency of NO at 50 °C is higher than that at 25 °C, suggesting that the aerobic denitri?er TAD1 display well denitrification performance under thermophilic condition. Starvation for 2, 4 and 8 days resulted in the re-acclimation times of Chelatococcus daeguensis TAD1 ranging between 4 and 16 hours. A longer recovery time than that for weekend shutdown will be required when a longer starvation occurs. The results presented here demonstrate the feasibility of biotrickling ?lter for the thermophilic removal of NOx from gas streams.

Implications A novel denitrifier Chelatococcus daeguensis TAD1 was isolated from an on-site biotrickling filter in aerobic environment at 50 °C. To date, C. daeguensis has not been previously reported to be an aerobic denitrifier. In this study, a thermophilic biotrickling ?lter system inoculated with Chelatococcus daeguensis TAD1 for treatment of nitric oxide is developed. In coal-fired power plants, influent flue gas stream for nitrogen oxides (NOx) removal typically exhibit temperatures between 50 and 60 °C. Traditionally, cooling gases to below 40 °C prior to biological treatment is inevitable, which is costly. Therefore, the application of thermophilic microorganisms for the removal of nitric oxide (NO) at this temperature range would offer great savings and would greatly extend the applicability of biofilters and biotrickling filters. Until now there has not been any study published about thermophilic biological treatment of NO under aerobic condition.  相似文献   

12.
Exposure to environmental pollutants is known to be harmful to health, in general, and to lungs in particular. In this respect, traffic police are at particular risk due to the nature of their job, since they are exposed to emissions from the vehicles. Here, we show that in the traffic police of Hyderabad city, India, the plasma levels of lipid peroxides are high, whereas the concentrations of the nitric oxide are low. In addition, the levels of various antioxidants in the RBC lysate such as catalase, superoxide dismutase and glutathione peroxidase were found to be low with no significant alteration in plasma ceruloplasmin levels. These results suggest that exposure to air pollutants, a major portion of which is due to emissions from the vehicles, can increase oxidant stress, decrease the levels of antioxidants and nitric oxide. This imbalance in the oxidant/antioxidant system may lead to lung damage and is likely to cause respiratory problems in individuals exposed to air pollution.  相似文献   

13.
The development of a thermophilic biotrickling filter (BTF) system to inoculate a newly isolated strain of Chelatococcus daeguensis TAD1 for the effective treatment of nitric oxide (NO) is described. A bench-scale BTF was run under high concentrations of NO and 8% O2 in thermophilic aerobic environment. A novel aerobic denitrifier Chelatococcus daeguensis TAD1 was isolated from the biofilm of an on-site biotrickling filter and it showed a denitrifying capability of 96.1% nitrate removal rate in a 24 h period in aerobic environment at 50 degrees C, with no nitrite accumulation. The inlet NO concentration fluctuated between approximately 133.9 and 669.6 mg m-3 and kept on a steady NOx removal rate above 80% in an oxygen stream of 8%. The BTF system was able to consistently remove 80-93.7% NO when the inlet NO was 535.7 mg m-3 in an oxygen stream of 2-20%. The biological removal efficiency of NO at 50 degrees C is higher than that at 25 degrees C, suggesting that the aerobic denitrifier TAD1 display well denitrification performance under thermophilic condition. Starvation for 2, 4 and 8 days resulted in the re-acclimation times of Chelatococcus daeguensis TAD1 ranging between 4 and 16 hours. A longer recovery time than that for weekend shutdown will be required when a longer starvation occurs. The results presented here demonstrate the feasibility of biotrickling filter for the thermophilic removal of NOx from gas streams. Implications: A novel denitrifier Chelatococcus daeguensis TAD1 was isolated from an on-site biotrickling filter in aerobic environment at 50 degrees C. To date, C. daeguensis has not been previously reported to be an aerobic denitrifier. In this study, a thermophilic biotrickling filter system inoculated with Chelatococcus daeguensis TADI for treatment of nitric oxide is developed. In coal-fired power plants, influent flue gas stream for nitrogen oxides (NOx) removal typically exhibit temperatures between 50 and 60 degrees C. Traditionally, cooling gases to below 40 degrees C prior to biological treatment is inevitable, which is costly. Therefore, the application ofthermophilic microorganisms for the removal of nitric oxide (NO) at this temperature range would offer great savings and would greatly extend the applicability ofbiofilters and biotrickling filters. Until now there has not been any study published about thermophilic biological treatment of NO under aerobic condition.  相似文献   

14.
To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C(3) herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C(3) herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget.  相似文献   

15.
Nitric oxide (NO) may participate in the ozone layer depletion and forming of nitric acid. Abiotic and biological mechanisms of NO removal from waste gases were studied in a biotrickling filter. The abiotic NO removal rate in the biotrickling filter was estimated by a review of the literature. The abiotic and biological removals were also verified in the biotrickling filter. The result has shown that chemical oxidation and bionitrification were both involved in the NO removal. It was found that the NO removal in high concentration (approximately 1000 ppm or higher) was in large measure the result of abiotic removal in both gas-phase and liquid-phase reactions. When NO concentration is low (less than approximately 100 ppm), bionitrification was the main process in the NO removal process in the biotrickling filter.  相似文献   

16.
17.

Melatonin (MT) and nitric oxide (NO) are known as scavengers of free radicals and an antioxidant against biotic and abiotic stresses in plant defense systems. However, whether NO interplays role in MT-induced antioxidant defense remains to be determined in the plants exposed to lead (Pb) toxicity. So, two experiments were designed to evaluate the role of NO in MT-mediated tolerance of maize plants to Pb stress. In the initial experiment, prior to starting different treatments, a solution of 0.05- or 0.10-mM MT was sprayed every other day for a period of 10 days to the leaves of maize plants exposed to Pb stress (0.1-mM PbCl2). Pb toxicity significantly caused reduction in plant biomass (both fresh and dry), PSII maximum efficiency (Fv/Fm), total chlorophyll, leaf potassium (K), calcium (Ca), and leaf water potential, but it resulted in increased levels of proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), electron leakage (EL), leaf Pb, and endogenous NO. An addition experiment was set up to further understand whether NO played role in mitigation of Pb toxicity in maize plants by MT using scavengers of NO and cPTIO combined with the MT treatments. MT-induced tolerance to Pb toxicity was totally eliminated by cPTIO by reversing endogenous NO. The present results clearly indicated that MT mediated the endogenous NO to improve tolerance of maize plants to Pb toxicity. This evidence was also supported by the increases of H2O2 and MDA and reduces some antioxidant enzyme activities tested as well as the plant growth inhibition and increased leaf Pb content by application of MT combined with cPTIO.

  相似文献   

18.
This paper is particularly related to elemental mercury (Hg0) oxidation and divalent mercury (Hg2+) reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO2). As a powerful oxidant and chlorinating reagent, Cl2 has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO2, NO, as well as H2O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO2 and NO on Hg0 oxidation and Hg2+ reduction with the intent of unraveling unrecognized interactions among Cl species, SO2, and NO most importantly in the presence of H2O. The experimental results demonstrated that SO2 and NO had pronounced inhibitory effects on Hg0 oxidation at high temperatures when H2O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg2+ back into its elemental form. Data revealed that SO2 and NO were capable of promoting homogeneous reduction of Hg2+ to Hg0 with H2O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H2O was removed from the gas blend.  相似文献   

19.
Ground-level O3 formation is becoming a major concern in many cities due to recent tightening of O3 regulations. To control O3 formation, more efficient treatment processes for O3 precursors, such as NOx and volatile organic compounds (VOCs), are needed. One promising new technology for removing both NOx and VOCs from off-gas streams is biofiltration, a simple process whereby contaminated air is passed through a biologically active packed bed. In this study, a toluene-degrading fungal bioreactor was used to treat an aerobic gas stream contaminated with NO. The fungal bioreactor removed 93% of the inlet 250-ppmv NO at an empty bed contact time (EBCT) of 1 min when supplied with 90 g/m3/hr toluene. The presence of NH4+ concentrations greater than 0.4 mg NH3/g dry packing medium, however, resulted in poor NO removal. The bioreactor achieved a maximum toluene elimination capacity of 270 g/m3/hr and maintained greater than 95% toluene removal efficiencies over the 175-day study period.  相似文献   

20.
Fluxes of NO, NO2 and O3 were determined over a drained marshland pasture in south-east England by using flux-gradient techniques. Nitric oxide was found to be emitted at rates of up to 40 ng m(-2) s(-1), the rate of emission being related to the magnitude of the eddy diffusivity. Nitrogen dioxide deposited at rates of up to 90 ng m(-2) s(-1) under the control of stomatal resistance, a clear diurnal cycle being observed. Minimum canopy resistance was of the order of 80 s m(-1). Ozone deposition was also controlled by stomatal resistance, the minimum canopy resistance being around 100 s m(-1) and fluxes reaching a maximum of 220 ng m(-2) s(-1). Corrections made to NO and NO2 fluxes to compensate for chemical reactions showed flux divergences of the order of 30% for NO and NO2, but these were not statistically significantly different from the measured fluxes. The pasture was found to be a net sink for nitrogen in the form of NOx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号