首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Upper Weardale area the headwaters of the River Wear bisect the Northern Pennine Orefield, where Pb-Zn-F-Ba vein-type mineralisation has been exploited since the Roman Conquest. The area contains evidence of open pit, underground and hydraulic mining of base metal ores, associated mineral processing and smelting, exploitation of ironstones during the industrial revolution, recent extraction of fluorite and active quarrying. The aim of this study was to determine the extent of modern sediment contamination arising from these past activities. Samples of active stream sediments were collected from all major drainage channels at 1 km intervals. The sediments were analysed for Pb, Zn, Ba, Mn, Fe, Co, Ni, Cu, Cr, As, Sb, Ag and compared to data from earlier regional geochemical surveys of low order drainage samples using ArcView software. The significance of contamination levels was assessed using the Ontario aquatic sediment quality guidelines. Our results indicate widespread contamination of some major drainages by Pb, Mn, Zn and As at concentration levels anticipated to significantly affect use of the sediments by benthic organisms. Furthermore, Pb contamination shows persistence in stream sediments downstream towards agricultural areas of the floodplain and drinking water abstraction points, above which interaction with colliery mine water discharges may occur.  相似文献   

2.
通过现场采样及室内培养分析,研究了西藏当雄拉屋矿区污染土壤微生物区系组成、主要生理类群及其活性。结果表明:矿区土壤受重金属Cu、Zn、Pb、Cd不同程度污染,矿区污染土壤几种重金属质量分数比非矿区土壤有明显的增加。矿区土壤微生物区系组成和各生理类群发生了明显变化,土壤细菌、真菌、放线菌以及各生理类群数量均显著降低,且3大微生物以及各生理类群对矿区污染的敏感性大小分别表现为放线菌〉细菌〉真菌,硝化细菌〉氨化细菌〉纤维分解菌。矿区土壤酶活性较低,对照土壤的各种酶活性最高,而矿区土壤基础呼吸和代谢商则受到刺激明显提高,其中土壤脱氢酶的活性变化最大,作为矿区重金属污染的指标更灵敏。可见,土壤中微生物区系组成及参与物质转化的生理类群种类、数量及土壤酶活和微生物活性在一定程度上可反映该矿区污染生境的重金属污染特征及其生态功能的演变规律。  相似文献   

3.
研究了湖南省郴县东坡铅锌矿自然扩散晕内重金属的污染特征及污染控制措施,结果表明,该区域内的环境污染是以Pb、Zn、Cd和As为主的多金属复合污染,污染物在土壤中的化学形态以残渣态为主,水体中的细微尾矿砂颗粒物是重金属的主要迁移载体。该区域内作物中的Pb、Cd残留很高,用改变耕种制度的方法来控制铅锌矿区内的重金属污染是有效的  相似文献   

4.
铜陵市铜尾矿土壤动物群落生态研究   总被引:10,自引:2,他引:10  
对安徽省铜陵市铜尾矿地6种生境中土壤动物群落进行野外调查和室内分析,研究不同弃置堆放时间的铜尾矿地土壤的动物群落结构及其与尾矿基质理化性质、植被状况等生境条件之间的关系。结果表明,尾矿堆放时间、区位地貌和植被状况的不同,尾矿基质的理化性质发生变化,导致土壤动物的种类组成和数量分布具有明显差异。土壤动物在土体中的表聚性强,绝大部分集中分布于A层(0~5cm);土壤的物理性质越稳定,土壤动物越丰富;土壤肥力越高,土壤动物越丰富多样。即尾矿地土壤的生境条件越优越,土壤动物群落的物种丰富度越大,个体数量分布越多,群落多样性越高。这些研究结论为尾矿区的生态修复和可持续利用提供了参考依据。  相似文献   

5.
调查了拟建清平水库周围磷矿所排废渣的情况,弄清了废渣堆放量及分布。绵远河4个断面连续5个月水质监测的数据表明了该地废渣降雨淋溶对河流水质带来了严重的危害。河流沉积物分析表明,由于受磷矿渣的影响,沉积物中Cd、Pb、P、F超标严重,总磷含量平均高达9892mg/kg。若不控制磷矿废渣,新建的清平水库必将发生富营养化。  相似文献   

6.
Natural soils on steeply sloping landscapes in the Appalachian coal fields of Virginia. West Virginia. Kentucky, and Tennessee are often thin, rocky, acidic and infertile, making the topsoiling of surface mined sites impractical in many cases. Topsoil substitutes composed of blasted rock fragments are commonly used in this region. The proper selection and placement of designated topsoil substitutes is therefore critical to long term reclamation success. These mine soil surfaces are not in equilibrium and with the surface environment, and it is quite difficult to diferentiate among dissolution, adsorption, desorption and precipitation reactions as these surfaces weather with time. Severe compaction limits the productivity of many otherwise suitable topsoil substitutes. A minimum non-compacted thickness of 1 m is desirable to insure long run mine soil productivity for a variety of post-mining land uses. Significant changes in the physical, chemical, and mineralogical properties of mine soils occur within one year after placement. Mine soils high in silt content often form hard vesicular surface crusts, particularly when left unvegetated. The long term survival of plant communities on these mine soils is dependent upon mine soil organic matter accumulation and N and P cycling. Little is currently known about N and P dynamics in these mine soils, but P-fixation is a profound problem in high Fe3- spoils. Revegetation practices that were designed to meet 2-year bond release requirements may not he sufficient to meet new 5-year release standards. Hard rock derived mine soils can often equal or exceed native topsoil in productivity and post mining land use potential.  相似文献   

7.
The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10–100 μm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L−1 HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone.  相似文献   

8.
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.  相似文献   

9.
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au–Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.  相似文献   

10.
Acid mine drainage is commonly associated with land disturbances that encounter and expose iron sulphides to oxidising atmospheric conditions. The attendant acidic conditions solubilise a host of trace metals. Within this flow regime the potential exists to contaminate surface drinking water supplies with a variety of trace materials. Accordingly, in evaluating the applications for mines located in the headwaters of water sheds, the pre-mining prediction of the occurrence of acid mine drainage is of paramount importance.There is general agreement among investigators that coal organic sulphur is a nonparticipant in acid mine drainage generation; however, there is no scientific documentation to support this concensus. Using simulated weathering, kinetic, mass balance, petrographic analysis and a peroxide oxidation procedure, coal organic sulphur is shown to be a nonparticipant in acid mine drainage generation. Calculations for assessing the acid-generating potential of a sedimentary rock should not include organic sulphur content.  相似文献   

11.
We analysed changes in the ecological roles of species, trophic structure and ecosystem functioning using four standardized mass-balance models of the South Catalan Sea (North-western Mediterranean). Models represented the ecosystem during the late 1970s, mid 1990s, early 2000s, and a simulated no-fishing scenario. The underlying hypothesis was that ecosystem models should quantitatively capture the increasing exploitation in the ecosystem from the 1970s to 2000s, as well as differences between the exploited and non-exploited scenarios. Biomass showed a general decrease, while there was an increase in biomass at lower trophic levels (TL) from the 1970s to 2000s. The efficiency of energy transfer (TE) from lower to higher TLs significantly increased with time. The ecosystem during the 1990s showed higher biomass and flows than during the 1970s and 2000s due to an increase in small pelagic fish biomass (especially sardines). Exploited food webs also showed similarities in terms of general structure and functioning due to high intensity of fishing already in the 1970s. This intensity was highlighted with low trophic levels in the catch, high consumption of production by fisheries, medium to high primary production required to sustain the catches and high losses in secondary production due to fishing. Significant differences on ecosystem structure and functioning were highlighted between the exploited and no-fishing scenarios. Biomass of higher TLs increased under the no-fishing scenario and the mean trophic level of the community and the fish/invertebrate biomass ratios were substantially lower in exploited food webs. The efficiency of energy transfer (TE) from lower to higher TLs was lower under the no-fishing scenario, and it showed a continuous decrease with increasing TL. Marine mammals, large hake, anglerfish and large pelagic fish were identified as keystone species of the ecosystem when there was no fishing, while their ecological importance notably decreased under the exploited periods. On the contrary, the importance of small-sized organisms such as benthic invertebrates and small pelagic fish was higher in exploited food webs.  相似文献   

12.
The design of marine reserves is complex and fraught with uncertainty. However, protection of critical habitat is of paramount importance for reserve design. We present a case study as an example of a reserve design based on fine-scale habitats, the affinities of exploited species to these habitats, adult mobility, and the physical forcing affecting the dynamics of the habitats. These factors and their interaction are integrated in an algorithm that determines the optimal size and location of a marine reserve for a set of 20 exploited species within five different habitats inside a large kelp forest in southern California. The result is a reserve that encompasses approximately 42% of the kelp forest. Our approach differs fundamentally from many other marine reserve siting methods in which goals of area, diversity, or biomass are targeted a priori. Rather, our method was developed to determine how large a reserve must be within a specific area to protect a self-sustaining assemblage of exploited species. The algorithm is applicable across different ecosystems, spatial scales, and for any number of species. The result is a reserve in which habitat value is optimized for a predetermined set of exploited species against the area left open to exploitation. The importance of fine-scale habitat definitions for the exploited species off La Jolla is exemplified by the spatial pattern of habitats and the stability of these habitats within the kelp forest, both of which appear to be determined by ocean microclimate.  相似文献   

13.
Natural soils on steeply sloping landscapes in the Appalachian coal fields of Virginia. West Virginia. Kentucky, and Tennessee are often thin, rocky, acidic and infertile, making the topsoiling of surface mined sites impractical in many cases. Topsoil substitutes composed of blasted rock fragments are commonly used in this region. The proper selection and placement of designated topsoil substitutes is therefore critical to long term reclamation success. These mine soil surfaces are not in equilibrium and with the surface environment, and it is quite difficult to diferentiate among dissolution, adsorption, desorption and precipitation reactions as these surfaces weather with time. Severe compaction limits the productivity of many otherwise suitable topsoil substitutes. A minimum non-compacted thickness of 1 m is desirable to insure long run mine soil productivity for a variety of post-mining land uses. Significant changes in the physical, chemical, and mineralogical properties of mine soils occur within one year after placement. Mine soils high in silt content often form hard vesicular surface crusts, particularly when left unvegetated. The long term survival of plant communities on these mine soils is dependent upon mine soil organic matter accumulation and N and P cycling. Little is currently known about N and P dynamics in these mine soils, but P-fixation is a profound problem in high Fe3- spoils. Revegetation practices that were designed to meet 2-year bond release requirements may not he sufficient to meet new 5-year release standards. Hard rock derived mine soils can often equal or exceed native topsoil in productivity and post mining land use potential.  相似文献   

14.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   

15.
The Tanat Valley area of North Powys, Wales, has a long history of metalliferous mining, the most active period of extraction being during the 18th century, while the largest mine, Llangynog, was in production until 1899. Ore minerals found in the area include galena (PbS), sphalerite (ZnS) and chalcopyrite (CuFeS2). Below the Llangynog mine the valley is heavily contaminated with elevated levels of Pb, Zn, Cu and Cd in soils and river sediments. On the valley floor subsoil metal levels frequently greatly exceed those of topsoils which probably reflects contamination of the floodplain during the peak period of mining. High levels of base metals in the stream sediments some 2 km downstream of the mine area are thought to be due to river erosion of the contaminated bank material. Contamination derived from the old mine tips results in extremely high levels of heavy metals in soils and stream sediments in the immediate vicinty of the old workings. Some metal contamination is also thought to derive from previously undetected mineralisation.  相似文献   

16.
The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (< 10 cm total length) densities and seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.  相似文献   

17.
稀土尾矿区土壤重金属污染与优势植物累积特征   总被引:7,自引:0,他引:7  
矿山废弃地不仅占用大量土地,而且还是严重的污染源,因此,矿山废弃地的生态恢复己成为一项紧迫而重要的研究课题。对广东省河源市和平县下车镇内的稀土矿区土壤的重金属污染情况进行调查,并对该区优势植物对重金属的富集特征进行分析,以期对稀土尾矿区的生态系统的恢复和重建提供理论依据。主要研究的3种植物分别是:马唐草(Digitaria sanguinalis),香根草(Vetiveria zizanioides),望江南(Cassia occidentalis)。采用原子吸收分光光度法测定稀土矿区废弃地土壤和植被中Mn、Pb、Zn的含量,并计算优势植物对重金属的生物富集系数BAC(Biological Accumulating Coefficient)和生物转移系数BTC(Biological Transfer Coefficient)。结果表明:研究区域的土壤中重金属含量Mn、Pb、Zn的平均含量均超出广东省土壤背景值和中国土壤背景值,土壤受Mn污染最严重,其次是Pb、Zn的污染。3种草本植物对于Pb的BAC和BTC均小于1,说明这3种植物对Pb的富集和运输能力都很弱。香根草对于Mn和Zn的BAC分别为0.9和0.4,小于1,BTC分别为3.7和1.1,大于1,说明香根草对Mn和Zn的富集能力不强,但吸收后的运输能力很强。马唐草和望江南2种植物对于Mn和Zn的BAC和BTC均大于1,说明它们对重金属Mn和Zn具有较强的吸收和转移能力,是Mn和Zn的超富集植物。马唐草覆盖率高,抗病虫能力强,可作为该矿区生态恢复的先锋植物,望江南可以间作种植。  相似文献   

18.
试论矿山环评中的生态恢复评价问题   总被引:16,自引:0,他引:16  
矿山生态恢复是矿山环保对策中的一项技术较强的措施之一,它既有防治水土流失的功能,又有降解有毒污染的功能,并能产生较好的经济效益。但没有科学依据而盲目进行生态恢复,就有可能对环境和人类带来风险,为减少风险,在矿山开发前的环境影响评价中,就应对生态恢复这一措施进行评价,提出合理的恢复模式,为决策部门提供科学依据。  相似文献   

19.
试验表明:不同来源的Pb、Zn和Cd复合污染物在土壤中的形态分布有明显的差异,在废矿水和尾矿砂污染的土壤中,Pb、Zn和Cd主要以残渣态存在,而添加土壤中的Pb主要以弱专性吸附态和有机结合态存在,Zn和Cd主要以交换态存在,大豆苗对添加土壤中Pb、Zn和Cd的富集能力较强,而对废矿水污染和尾矿砂污染土壤中Pb、Zn和Cd的富集能力相对较弱。  相似文献   

20.
韶关地区大宝山铁多金属矿产资源的开采给环境带来了严重的危害。采选冶产生的废液及固体废弃物堆积的淋滤酸水,携带浸滤出的大量重金属离子排入下游河道,严重影响矿区及酸水流域的生态环境。通过对该铅锌矿区土壤重金属分布、土壤微生物数量与植物重金属积累特征进行采样分析研究,结果表明:铅锌矿区土壤各重金属元素质量分数均高于对照土壤,矿区土壤均受到不同程度的污染;五节芒(Miscanthusfloridulus)植物中的元素质量分数表现为Zn〉Pb〉Cu〉Cd,Zn与土壤元素的相关性最为显著,其次为Pb;与对照土壤相比,矿区土壤微生物总数下降了68.43%-80.32%,各主要生理类群数量均呈下降趋势。矿区土壤生态系统处于不利于有益微生物的繁殖和活动的境地,从而大大削弱了土壤中C、N营养元素循环速率和能量流动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号