首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
3.
4.
The reaction mechanism of 3-chlorophenol with OH, H in aqueous solution was studied by transient technology.The 3-chlorophenol aqueous solutions have been saturated with air or N2 previously.Under alkaline condition,the reaction of OH radical with 3-chlorophenol produces 3-chlorinated phenoxyl radical ,with the absorption peaks at 400 nm and 417nm.Under neutral condition,the reaction of OH radical with 3-chlorophenol produces OH-adduct with the maximal absorption at about 340 nm.And in acid solution,the reaction of H with 3-chlorophenol produces H-adduct with the maximal absorption at about 320nm.3-chlorophenol is compared with 4-and 2-chlorophenols from the free radical pathways.The results show that the positions of chlorine on the aromatic ring strongly influence the dehalogenation and degradation process.  相似文献   

5.
利用正交试验研究了N、P、Fe、Mn四种物质对亚历山大藻LC3生长的影响,比较无机营养盐及微量金属元素对亚历山大藻LC3增殖影响的大小顺序,结果显示无机N对藻的生长有促进作用,882—2646μmol/L浓度时LC3生长较好,2646μmol/L下生长速率略快。无机P对亚历山大藻LC3生长的影响差异显著,一定浓度的P对LC3的生长有促进作用。Fe及Mn对藻生长均有促进作用,分别在3.5μg/L的Fe浓度下及18—36gg/L的Mn浓度下藻可获得较快的生长速率。四种元素对亚历山大藻LC3生长均有促进作用,各元素对生长影响的大小顺序依次为:P〉Mn〉N〉Fe。  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
It was investigated whether exposure of elevated ozone (O3) and carbon dioxide (CO2) concentrations affected the macronutrient (N, P, K, Mg, Ca) concentrations in potato (Solanum tuberosum L.) tubers in three open-top chamber experiments from Sweden and Finland. The tuber concentrations of N, P, K and Mg correlated positively with O3 exposure (although not significantly in the case of N and P) but the O3 exposure had no effect on the tuber concentration of Ca. A likely mechanism behind the observed O3 effects was suggested to be that the more progressed senescence of O3 exposed plants was associated with a larger extent of reallocation of mobile nutrients from the haulm to the tubers. In addition, the uptake of macronutrients may have been less negatively affected by O3 exposure than the assimilation of carbon. O3 tended to reduce the total tuber contents of all investigated nutrients, which imply a reduced fertilizer need per unit field area. This was not associated with a decreased fertilizer need per tonnage of yield, as the tuber nutrient concentrations were increased by O3 exposure. The increased CO2 concentration did not significantly affect any of the investigated macronutrients in the present dataset but did generally prevent the O3 induced increases in nutrient concentrations to be expressed (only significant in the case of N and Mg). The O3 induced increase in tuber K concentration, may mediate earlier observed O3 effects on potato tuber concentrations of citric and malic acids. To conclude, anticipated future (and even presently occurring) O3 exposure has a negative impact on the total tuber contents of K and Ca and probably also on the total tuber contents of N, P and Mg. O3 exposure causes increased tuber concentrations of N, P, K and Mg at an early harvest. The O3 induced increase in tuber concentration tended to diminish by a CO2 elevation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号