首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The accident at the Chernobyl nuclear power plant in 1986 significantly elevated the 137Cs levels of fish in Finnish lakes. About 6200 fish samples from 390 lakes comprising 20 species have been analysed for 137Cs since 1986. The sizes of the lakes varied from a few hectares to about 1000 km2. Activity concentrations of 137Cs in fish still varied widely in 2003, from 16 to 6400 Bq/kg fresh weight. This paper presents the results of statistical analyses with multivariate linear regression models carried out on the empirical data collected since 1986. The statistical analysis resulted in separate models for two time periods describing temporal changes of 137Cs in fish. The explanatory variables were fish species with various feeding habits, the size class of the lake, municipal division, drainage area, time since the deposition and deposition level of the municipality. The calculated values for 137Cs in fish did not differ statistically significantly from the observed values in the validation data. The explanatory variables explained 58% (the first time period) and 72% (the second time period) of the total variability of 137Cs in fish.  相似文献   

2.
Two field expeditions in 1996 studied 137Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137Cs internal dose to inhabitants, even 10 years after the radioactive fallout.  相似文献   

3.
We investigated the vertical profiles of 239+240Pu, 137Cs, and excess 210Pb (210Pbex) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of 239+240Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of 239+240Pu from the catchment area in addition to direct deposition on the lake surfaces. The 137Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the 137Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The 137Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The 239+240Pu/137Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the 137Cs was lost from the sediments. The low inventory of 137Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.  相似文献   

4.
A number of hypotheses have previously been developed concerning the rates of uptake and elimination of radiocaesium (137Cs) in fish. These include the influence of potassium and other water chemical parameters on both uptake and elimination, and the effect of fish size on accumulation. In order to test these hypotheses, we have assembled a data set comprising more than 1,000 measurements of radiocaesium (137Cs) in predatory fish (perch, pike and brown trout) in nine European lakes during the years after Chernobyl. These data have been analysed using simple models for uptake and excretion of 137Cs in fish, showing that: 1. Fish-water concentration factors (CF) were inversely proportional to potassium [K+] concentration of the different lakes, in agreement with previous studies. 2. The uptake rate of 137Cs in fish was negatively correlated with lake [K+], but excretion rate was independent of [K+]. 3. Lower than expected CF values were found in one lake, Iso Valkj?rvi, Finland. This is attributed to inhibition of the K+ (and therefore 137Cs) high affinity transport system in aquatic plants and fish by low pH and/or low Ca2+. 4. The inclusion of fish weight as a parameter in our dynamic model significantly improves the ability of the model to fit the observed measurements of 137Cs. 5. The model developed from the above hypotheses was able to fit the data from nine different lakes to within approximately a factor of 3 of the observed values.  相似文献   

5.
This paper presents results of a model-test carried out within the framework of the COMETES project (EU). The tested model is a new lake model for radiocesium to be used within the MOIRA decision support system (DSS; MOIRA and COMETES are acronyms for EU-projects). This model has previously been validated against independent data from many lakes covering a wide domain of lake characteristics and been demonstrated to yield excellent predictive power (see H?kanson, Modelling Radiocesium in Lakes and Coastal Areas. Kluwer, Dordrecht, 2000, 215 pp). However, the model has not been tested before for cases other than those related to the Chernobyl fallout in 1986, nor for lakes from this part of the world (Southern Urals) and nor for situations with such heavy fallout as this. The aims of this work were: (1) to carry out a blind test of the model for the case of continental Lake Uruskul, heavily contaminated with 90Sr and 137Cs as a result of the Kyshtym radiation accident (29 September 1957) in the Southern Urals, Russia, and (2) if these tests gave satisfactory results to reconstruct the radiocesium dynamics for fish, water and sediments in the lake. Can the model provide meaningful predictions in a situation such as this? The answer is yes, although there are reservations due to the scarcity of reliable empirical data. From the modelling calculations, it may be noted that the maximum levels of 137Cs in fish (here 400 g ww goldfish), water and sediments were about 100,000 Bq/kg ww, 600 Bq/l and 30,000 Bq/kg dw, respectively. The values in fish are comparable to or higher than the levels in fish in the cooling pond of the Chernobyl NPP. The model also predicts an interesting seasonal pattern in 137Cs levels in sediments. There is also a characteristic "three phase" development for the 137Cs levels in fish: first an initial stage when the 137Cs concentrations in fish approach a maximum value, then a phase with relatively short ecological half-lives followed by a final phase with long ecological half-lives more or less corresponding to the physical decay of radiocesium.  相似文献   

6.
The transfer of 137Cs into fish in seepage and drainage lakes from 1988 to 1992 was analysed using linear regression. Empirical results for 137Cs in lake water and fish were used to calculate concentration factors (CFs). In the drainage lakes the CF decreased during the study period by 9% per year whereas in the seepage lakes the CF increased significantly by 4.3% per year. The transfer of 137Cs into pike was significantly (1.6 times) higher than that into perch. The CF increased on average by 3.4% for each 1-cm increase in the median size of perch. The relationship between the water chemistry and the CF differed between clear-water seepage and brown-water drainage lakes.  相似文献   

7.
Liming of lakes is considered one possible remedial action to reduce the accumulation of radionuclides into fish in the case of a radiological accident. These responses were tested in field conditions in a small acidified lake that was divided into two parts: one limed with CaCO3 and the other half left as an unlimed control. The transfer of 90Sr from water into fish decreased on average by 50% during the first year after liming. However, at the same time the 90Sr concentration in water increased, reaching a maximum within 6 months after liming. Approximately 50% more 90Sr was detected in water in the limed part of the lake than on control side during the first year. 90Sr was most probably released from the sediment as the Ca concentration and pH of the water increased. As a result of these two processes, which counterbalanced each other (increased release of 90Sr into water from sediment and decreased transfer of 90Sr from water into fish), the 90Sr concentration in fish did not notably differ between the limed and control sides of the lake. Liming may only be suitable as a remedial action if carried out immediately after a radiological accident, before significant amounts of radionuclides have been deposited in lake sediments. In the case of 137Cs, the effect of liming was less pronounced. 137Cs activity concentration in water increased in the first year by 20% and uptake by fish decreased by 20%.  相似文献   

8.
This paper addresses some fundamental problems related to the structure and function of catchment areas in general and for seasonal (weekly, monthly) mass balance calculations of radionuclides (and metals, organics and nutrients) in particular. A new catchment area model has been developed and critically tested. This modelling approach is based on mechanistic principles. The catchment area is differentiated into inflow ( approximately dry land) areas and outflow (=wetland) areas. The model also accounts for time-dependent fixation of substances in the catchment related to single-pulse fallouts. The model has a general structure. It is simple to use since there are only two soil type classes and three categories for the outflow areas. In critical tests, the model was put within a framework where it is intended, i.e., within a more comprehensive lake model. Radiocesium was used as a tracer in these tests. Modelled values were compared to empirical data from 23 lakes (351 data on (137)Cs in water, as well as in sediments, small fish and on suspended particles) covering a very wide limnological domain (latitudes from 42 to 61 degrees V, altitudes from 0 to 1090 m ASL, catchment areas from 0.17 to 114,700 km(2), precipitation from 430 to 1840 mm/year, lake areas from 0.042 to 1147 km(2), mean depths from 1.1 to 90 m, pH from 5.1 to 9 units, potassium concentrations from 0.23 to 27.5 mg/l, total P concentrations from 8.3 to 100 microg/l and theoretical water retention times from 0.02 to 137 years). When modelled values were compared to empirical data, the slope was almost perfect (0.99) as well as the coefficient of determination (r2 = 0.96).  相似文献   

9.
太湖流域湖泊水环境问题、成因与对策   总被引:17,自引:0,他引:17  
综合分析了太湖流域存在的的湖泊水环境问题,主要表现为水质全面恶化、洪涝灾害加剧、湖泊生态系统与生物资源破坏和底质污染严重。造成湖泊水环境问题的自然因素与流域地势平缓、亚热带季风气候和地面沉降有关;人为因素如围垦、污水排入湖泊、过量使用农药化肥和湖泊淤积加剧了太湖流域水环境问题的发展。针对当前存在的湖泊水环境问题,提出湖泊水环境整治对策是:树立可持续发展观念,加强流域污染源的控制;重视湖泊水环境的科学研究;加强湖泊水环境水资源的规划与管理;因地制宜地实施湖泊水环境整治工程。  相似文献   

10.
The amount and vertical distribution of Chernobyl-derived 137Cs in the bottom sediments of some Finnish lakes were studied. Sediment and surface water samples were taken in 2000 and 2003 from 12 stations in nine lakes and the results were compared with those obtained in corresponding surveys carried out in 1969, 1978, 1988 and 1990. Each of the five deposition categories of Chernobyl fallout in Finland were represented. The depth profiles of 137Cs in the sediments showed considerable variety in the lakes studied. The peak values varied between 1.5 and 46 kBq kg(-1) dry wt. The size and shape of the peak did not always correlate with the amount of deposition in the area, but on the other hand, reflected differences in sedimentation processes in different lakes. In some of the lakes the peak still occurred in the uppermost (0-2 cm) sediment layer, but in an extreme case the peak occurred at a depth of 22-23 cm corresponding to a sedimentation rate of 16 mm year(-1) during the 14 years after the Chernobyl accident. The total amounts of 137Cs in sediments varied from 15 to 170 kBq m(-2) at the sampling stations studied. Since 1990, the amounts have continued to increase slightly in two lakes, but started to decrease in the other lakes. In most of the lakes, the total amounts of 137Cs in sediments were about 1.5-2 times higher than in local deposition. In two lakes, the ratio was below 1, but in one case 3.2. Compared with the total amounts of 137Cs at the same stations in the late 1960s and 1970s, the values were now at their highest, at about 60-fold. The most important factors affecting 137Cs values in sediments were the local amount of deposition and the type of the lake and the sediment, but in addition, there were a number of other factors to be considered.  相似文献   

11.
The total amounts of 137Cs and 90Sr transported from Finland by rivers into the Gulf of Finland, Gulf of Bothnia and Archipelago Sea since 1986 were estimated. The estimates were based on long-term monitoring of 137Cs and 90Sr in river and other surface waters and on the statistics of water discharges from Finnish rivers to the above sub-areas of the Baltic Sea. The total amounts of 137Cs and 90Sr removed from Finland into the Baltic Sea during 1986-1996 were estimated to be 65 and 10 TBq, respectively. The results show that, although the deposition of 137Cs was much higher than that of 90Sr after the Chernobyl accident, the amount of 137Cs removed from Finland is only six times as high as that of 90Sr. This emphasizes the importance of 90Sr while considering radiation doses from surface waters and 137Cs while estimating doses via pathways from catchment soil, lake sediments and biota after a fallout situation.  相似文献   

12.
A sediment profile with a thickness of 28.12 m in a failed reservoir in a small catchment of the Yuntaishan Gully in the Loess Plateau of China consisted of 44 flood couplets deposited during the period from 1960 to 1970 with total volume of 2.36 x 10(6)m(3). Specific sediment yields for a flood event varied from 300 t km(-2) to 14,400 t km(-2) and annual sediment yields varied from 2500 t km(-2) in 1966 to 40,000 t km(-2) in 1964 with a mean value of 12,700 t km(-2)a(-1) for the period. Average annual (137)Cs concentrations of the sediments increased from 0.92 Bq kg(-1) in 1960 to 4.82 Bq kg(-1) in 1963, then decreased to 1.53 Bq kg(-1) in 1970. The total (137)Cs activity in the reservoir sediments was 9.22 x 10(9) Bq, which accounted for 31.9% of the total (137)Cs fallout precipitation of 2.89 x 10(10) Bq within the catchment during the period. The proportion of the (137)Cs loss from the catchment to the (137)Cs fallout precipitation within the catchment in a year varied between 8.01% and 66.8%, and it was 20.9% for the peak (137)Cs deposition year of 1963 and 52.0% in 1964. By analysis of the (137)Cs budget in the catchment for the (137)Cs peak precipitation period from 1962 to 1964, the (137)Cs surface enrichment coefficient Gamma should be much less than 0.23. And for calculation of soil losses on the cultivated land in the inter-gully area by using the Mass Balance Model II, the value of Gamma should be 0.05-0.1.  相似文献   

13.
An uptake parameter u (L kg−1 d−1) and a loss rate parameter k (d−1) were estimated for the patterns of accumulation and loss of 133Cs by three fish species following an experimental 133Cs addition into a pond in South Carolina, USA. These u and k parameters were compared to similar estimates for fish from other experimental ponds and from lakes that received 137Cs deposition from Chernobyl. Estimates of u from ponds and lakes declined with increasing potassium concentrations in the water column. Although loss rates were greater in the experimental ponds, the times required to reach maximum Cs concentrations in fish were similar between ponds and lakes, because ponds and lakes had similar retentions of Cs in the water column. The maximum Cs concentrations in fish were largely determined by initial Cs concentrations in the water column. These maximum concentrations in fish and the times required to reach these maxima are potentially useful indicators for assessments of risks to humans from fish consumption.  相似文献   

14.
We summarize the patterns of 137Cs activity concentrations and transfer into fish and other biota in four small forest lakes in southern Finland during a twenty-year period following the Chernobyl accident in April 1986. The results from summer 1986 showed fastest accumulation of 137Cs into planktivorous fishes, i.e. along the shortest food chains. Since 1987, the highest annual mean values of 137Cs have been recorded in fish occupying the highest trophic levels, for perch (Perca fluviatilis) 13,600 Bq/kg (ww) and for pike (Esox lucius) 20,700 Bq/kg (ww). At the same time, activity concentrations of 137Cs in crustacean zooplankton and Asellus aquaticus have ranged between 1000 and 19,500 Bq/kg (dw). In 2006, 5-28% of the 1987 137Cs activity concentration levels were still present in perch and pike. Since 1989 their 137Cs activity concentrations in oligohumic seepage lakes have remained significantly higher than in polyhumic drainage lakes due to the increased transfer of 137Cs into fish in the seepage lakes with lower electrolyte concentrations, longer water retention times and lower sedimentation rate.  相似文献   

15.
In recent years there has been growing international interest in the assessment of doses and risks from ionising contaminants to biota. In this study the ERICA Tool, developed within the EC 6th Framework Programme, was applied to estimate incremental dose rates to biota in freshwater ecosystems in Finland mainly resulting from exposure to the Chernobyl-derived radionuclides 137Cs, 134Cs and 90Sr. Data sets consisting of measured activity concentrations in fish, aquatic plants, lake water and sediment for three selected lakes located in a region with high 137Cs deposition were applied in the assessment. The dose rates to most species studied were clearly below the screening level of 10 μGy h−1, indicating no significant impact of the Chernobyl fallout on these species. However, the possibility of higher dose rates to certain species living on or in the bottom sediment cannot be excluded based on this assessment.  相似文献   

16.
The Ethiopian rift is characterized by a chain of lakes of various sizes and hydrological and hydrogeological settings. The rift lakes and feeder rivers are used for irrigation, soda extraction, commercial fish farming, and recreation, and they support a wide variety of endemic birds and wild animals. The levels of some of these lakes have changed dramatically over the last three decades. Lakes that are relatively uninfluenced by human activities (Langano and Abaya) remain stable except for the usual inter-annual variations, strongly influenced by rainfall. Some lakes have shrunk due to excessive abstraction of water; others have expanded due to increases in surface runoff and groundwater flux from percolated irrigation water. Lakes Abiyata and Beseka, both heavily impacted by human activities, show contrasting lake level trends: the level of Abiayata has dropped by about 5 m over three decades because of the extraction of water for soda and an upstream diversion for irrigation. Beseka has expanded from an area of 2.5 to 40 km2 over the last three decades because of increased groundwater inputs from percolated irrigation water. Lake Awassa has risen slightly due to land use changes resulting in increased runoff in its catchment. This paper addresses these lake level changes and their environmental repercussions, based on evidence from hydrometeorological records, hydrogeological field mapping supported by aerial photography and satellite imagery interpretations, water balance estimation, and hydrological modeling. A converging evidence approach is used to reconstruct the temporal and spatial variations of lake levels. The results reveal that the major changes in the rift valley are mainly related to anthropogenic factors. These changes appear to have grave environmental consequences for the fragile rift ecosystem. These consequences demand the very urgent implementation of integrated basin wide water management practice.  相似文献   

17.
Concentrations of (137)Cs were determined in 747 lynxes killed in Norway during the period 1986-2001. Highly variable (137)Cs concentrations and aggregated transfer coefficient values were observed, probably caused by variable (137)Cs concentrations in prey and the lynx's extensive home ranges and roaming distances. Adult lynxes had higher (137)Cs concentrations than sub-adults, and lynxes killed in regions with extensive reindeer grazing areas were more contaminated than others. A model with (137)Cs deposition density, the year lynxes were killed, age, and extent of reindeer grazing area accounted for 50% of the variability in observed (137)Cs concentrations. The analyses were equivocal regarding the influence of stomach content on (137)Cs concentrations in lynx muscle, i.e., on the lynx's specialization in prey species. Gender was not significant. Information on caesium retention in lynx and better estimates of deposition densities in lynxes' home ranges are important for further elucidation of factors influencing (137)Cs contamination in lynxes.  相似文献   

18.
19.
During the years after the Chernobyl accident the radioceasium activity concentration in most contaminated aquatic ecosystems decreased markedly. Lakes with no permanent inflows and outflows (closed lakes), however, still present a radioecological problem which is expected to continue for some time. In this paper, a mechanistic model for the long-term prediction of radiocaesium behaviour in closed lakes is developed. The model of Prokhorov (Radiokhimiya (Radiochemistry) 11 (1969) 317) was modified to describe the effects of bottom sediment bioturbation, surface runoff from the catchment and suspended solids formation and sedimentation. The model input parameters are the effective diffusion coefficient in bottom sediments, depth of the completely mixed layer, the distribution coefficient in the sediment-water system, the runoff coefficient, sedimentation rate, and deposition density. Values of all these parameters can be independently estimated or measured in a short-term experiment. Given negligible runoff and sedimentation, the dynamics of radiocaesium in lake water is described by a simple equation with only one unknown parameter. This allows us to make long-term predictions on the basis of a series of measurements carried out during the relatively short period. The model was tested against 137Cs activity concentrations measured between 1993 and 1999 in Svyatoe lake in the Bryansk region of Russia. Calculated and measured activity concentrations are in good agreement.  相似文献   

20.
The work describes the uptake, retention/biological elimination and organ/tissue distribution of 137Cs by freshwater Japanese catfish (Silurus asotus Linnaeus) under laboratory conditions. The fish were divided into three groups based on their size and age and reared in 137Cs-spiked water. The concentration of 137Cs in the whole body of the live fish was measured at regular intervals up to 60 days. A significant accumulation of 137Cs was found, but a steady state condition was not achieved by the end of the experiment. The bioaccumulation factors at steady state and the required time to reach steady state were estimated to be 1.55 and 255 days, 1.76 and 180 days and 1.99 and 160 days for large, medium and small size fish, respectively. To determine the effective half-life of 137Cs, the fish were transferred and reared in the non-contaminated host water. The concentration of the remaining 137Cs in the whole body of the live fish was measured up to 66 days. The average effective half-life of 137Cs in the fish species was found to be approximately 142 days for fish of all sizes. The distribution of 137Cs in different organs/tissues of the fish was determined. Accumulation of 137Cs in muscle/flesh of the fish was found to be approximately 75% of whole body accumulation. The uptake rate and the retention capability of juvenile fish were found to be higher and therefore, these were more susceptible to 137Cs than adult and old fish, and could be an important source of 137Cs in the human food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号