首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.  相似文献   

2.
Potential risks to aquatic organisms by four commercial phthalate esters, dimethyl (DMP), diethyl (DEP), di-n-butyl (DBP), and butylbenzyl (BBP), were assessed using measured and calculated concentrations in North American and Western European surface waters. Predicted no effect concentrations (PNECs) were calculated using statistical extrapolation procedures and the large aquatic toxicity database. Surface water concentrations of DMP, DEP, DBP, and BBP were calculated using reported emissions to US surface waters from the toxics release inventory (TRI). Monitoring data obtained from the US EPA STORET database and literature surveys from North America and Western Europe show that DMP, DEP, DBP, and BBP are infrequently detected in surface water. Calculated and measured concentrations of DMP, DEP, DBP, and BBP are typically several orders of magnitude below their respective PNECs, indicating that these phthalate esters do not pose a ubiquitous threat to aquatic organisms in North American and Western European surface waters.  相似文献   

3.
In the Retezat Mountains concentrations of O3, NO2 and SO2 in summer season 2000-2002 were low and below toxicity levels for forest trees. While NH3 concentrations were low in 2000, the 2001 and 2002 concentrations were elevated indicating possibility for increased N deposition to forest stands. More than 90% of the rain events were acidic with pH values <5.5, contributing to increased acidity of soils. Crown condition of Norway spruce (Picea abies) and European beech (Fagus sylvatica) was good, however, defoliation described as >25% of foliage injured increased from 9.1% in 2000 to 16.1% in 2002. Drought that occurred in the southern Carpathians between fall 2000 and summer 2002 and frequent acidic rainfalls could cause the observed decline of forest condition. Both Norway spruce and European beech with higher defoliation had lower annual radial increments compared to the trees with low defoliation. Ambient O3 levels found in the Retezat did not affect crown condition of Norway spruce or European beech.  相似文献   

4.
A survey of PCDD and PCDF in French long-life half-skimmed drinking milk   总被引:3,自引:0,他引:3  
A national survey was carried out in order to assess the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in long-life half-skimmed drinking milk produced and consumed in France. 151 Samples were collected from 33 dairy establishments selected for their production amounts following a random sampling scheme. 148 of the 151 results were finally used for statistical assessment. The mean concentration of 2,3,7,8-TCDD toxicity equivalent found is 0.65 pg/g of milk fat. This result is far below the threshold recommended by the European Union.  相似文献   

5.
The impact of an industrial effluent containing high loads of calcium, cadmium, lead chloride and sulphate, on a river ecosystem was assessed using a combination of an effluent toxicity test, an ambient toxicity test and an ecological survey. Only this combination of techniques made it possible to discriminate between the effects of the discharge and those of the background pollution. Each of the individual techniques detected essential effects which the other failed to reveal. With the physical and chemical measurements, important increases of several components were measured at all sampling sites downstream of the discharge. With the ecological survey, however, no large changes in water quality could be determined at the sampling sites, due to the high degree of pollution present upstream of the discharge. Reproduction of Daphnia magna, exposed to sublethal effluent dilutions, was followed over two generations. The offspring of the first generation were shown to have an increased sensitivity to the effluent, compared to the first generation that was born from previously unexposed mothers. Besides the toxicity of the effluent, the acute and chronic toxicity of its main component, CaCl(2), was also determined. The results of the CaCl(2)-tests and toxicity data from literature for the suspected toxicants were transformed to Toxic Units (TU). Using the sum of the TUs we investigated the possibility of predicting effluent toxicity to Daphnia magna. Effluent toxicity was under-estimated by calculating the sum of the TUs of the individual components. Dilution of the effluent to a level at which the measured toxicant concentrations comply with European regulations still showed significant effects on Daphnia reproduction.  相似文献   

6.
The acute toxicity (96 h) of pyrene (PY) to European seabass (Dicentrachus labrax) juveniles assessed in a semi-static bioassay (SSB) with medium renewal at each 12 h, and in a static bioassay (SB) without medium renewal was compared in laboratorial conditions (water PY concentrations: 0.07-10 mg L−1). Main findings in the SSB that assessed mainly the toxicity of PY and its metabolites were: increased levels of bile PY metabolites in good agreement with the profile of lipid peroxidation levels (LPO) in exposed fish relating PY exposure and oxidative damage; increased levels of PY-type compounds in the brain indicating their ability to cross the blood-brain barrier; increased levels of these substances in liver and muscle which are edible tissues for humans thus raising concern on potential adverse effects on consumers of fish from PY contaminated areas; a significant inhibition of glutathione S-transferase activity suggesting its involvement in PY detoxication as toxicant scavenger; finally, an almost complete impairment of the swimming velocity at all the PY concentrations linking sub-individual to higher population level effects. In the SB, where the overall toxicity of PY, its metabolites and environmental degradation products was evaluated, 19% and 79% of PY decay in test media was found at 12 and 96 h, respectively. In general, the effects were similar to those of SSB but with significant effects being induced at higher PY concentrations indicating that the parental compound is more toxic than its environmental degradation products. The other main differences relatively to the SSB were: increased levels of PY-type substances in the liver suggesting more accumulation in this organ. Therefore, these findings highlight the need of carefully considering experimental design options when assessing the toxicity of readily degradable substances to marine fish, and stress the importance of taking into consideration the toxicity of environmental degradation products in addition to toxic effects of the parental substance and its metabolites for marine ecological risk assessment.  相似文献   

7.
Yin Y  Chen B  Mao Y  Wang T  Liu J  Cai Y  Jiang G 《Chemosphere》2012,86(1):8-16
Contamination of surface waters by pesticides continues to be the focus of concern for water authorities due to the growing evidence of their deleterious effects on aquatic life. In this context, the present work investigates the occurrence of 16 selected pesticides belonging to the classes of triazines, phenylureas, organophosphates, chloroacetanilides and thiocarbamates in surface waters from the Llobregat River (NE Spain) and some of its tributaries (Anoia and Rubí) and assesses their potential impact on the aquatic organisms by applying a recently developed index, the Short-term Pesticide Risk Index for the Surface Water System (PRISW-1), which takes into account the pesticides concentrations and their overall toxicity against three aquatic organisms (algae, Daphnia, and fish). Chemical analysis, performed by means of a fully automated method based on isotope dilution on-line solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry (on-line SPE-LC-ESI-MS/MS), revealed diuron and diazinon as the most ubiquitous and abundant compounds with levels up to 818 and 132 ng L−1, respectively. Total pesticide concentrations, which in only 1 out of 66 samples surpassed 500 ng L−1, were higher in the tributaries than in the river but their contribution in terms of mass-loads to the overall pesticide pollution of the Llobregat River was relatively small. Contamination increased downstream of the river and was clearly influenced by rainfall and hence river flow. Application of the PRISW-1 index indicated that, although pesticides levels fulfilled the European Union Environmental Quality Standards (EQS) for surface waters, the existing pesticide contamination poses a low to high ecotoxicological risk for aquatic organisms, that algae and macro-invertebrates are at higher risk than fish, and that the organophosphates diazinon and malathion and the phenylurea diuron are the major contributors to the overall toxicity and therefore the most problematic compounds.  相似文献   

8.
Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.  相似文献   

9.
In many European cities mass concentrations of PM10 (particles less than 10 μm in size) are still exceeding air quality standards as set by the European Commission in 1999. As a consequence, many cities introduced low emission zones (LEZs) to improve air quality and to meet the limit values. In Germany currently 48 LEZs are in operation. By means of dispersion modeling, PM10 concentrations were estimated to decrease up to 10%. Analysis of PM10 levels conducted for Cologne, Berlin, and Munich some time after the LEZs were introduced showed reduction of PM10 mass concentration in the estimated range. The PM10 particle fraction is, however, composed of particles with varying toxicity, of which diesel soot is highly health relevant. An evaluation of air quality data conducted in Berlin showed that in 2010 traffic-related soot concentrations measured along major roads decreased by 52% compared to 2007. Diesel particle emissions in Berlin were reduced in 2012 by 63% compared to a business-as-usual scenario (reference year 2007). A strong reduction of the traffic-related particle fraction of PM2.5 was also reported for Munich. Therefore, it is likely that the effects of LEZs are considerably more significant to human health than was anticipated when only considering the reduction of PM10 mass concentrations.
Implications: The implementation of low emission zones in German cities might result in a reduction of PM10 levels concentrations by up to 10%. However, it is difficult to show a reduction of PM10 annual averages in this order of magnitude as meteorology has a large impact on the year-to-year variation of PM mass concentrations. Monitoring of other PM metrics such as black smoke (BS) or elemental carbon (EC) might be a better strategy for evaluating LEZs effects. The benefit of low emission zones on human health is far greater than is presently visible from routine measurements of PM10.  相似文献   

10.
The criteria for classification and labelling of substances as “dangerous for the environment” agreed upon within the European Union (EU) were applied to two sets of existing chemicals. One set (sample A) consisted of 41 randomly selected compounds listed in the European Inventory of Existing Chemical Substances (EINECS). The other set (sample B) comprised 115 substances listed in Annex I of Directive 67/548/EEC which were classified by the EU Working Group on Classification and Labelling of Existing Chemicals. The aquatic toxicity (fish mortality,Daphnia immobilisation, algal growth inhibition), ready biodegradability and n-octanol/water partition coefficient were measured for sample A by one and the same laboratory. For sample B, the available ecotoxicological data originated from many different sources and therefore was rather heterogeneous. In both samples, algal toxicity was the most sensitive effect parameter for most substances. Furthermore, it was found that, classification based on a single aquatic test result differs in many cases from classification based on a complete data set, although a correlation exists between the biological end-points of the aquatic toxicity test systems.  相似文献   

11.
Background, Aim and Scope The article is focused on dioxin, furan, PCB and organochlorine pesticide monitoring in the surface waters of the Central European, protected natural reserve Krivoklatsko, under the UNESCO programme Man and Biosphere. Persistent compounds are presently transported via different means throughout the entire world. This contamination varies significantly between sites. This raises the question of what constitutes the naturally occurring background levels of POPs in natural, unpolluted areas, but which are close to industrialised regions. Information of real background POP contamination can be of high value for risk assessment management of those sites evidently polluted and for the defining of de-contamination limits. Preserved areas should not be seen as isolated regions in which the impacts of human activities and natural factors are either unexpected or overlooked. Every ambient region, even those protected by a law or other means, are still closely connected to neighbouring human developed and impacted areas, and are therefore subject to this anthropogenic contamination. These areas adjacent to natural reserves are sources of diverse substances, via entry of air, water, soil and/or biota. After an extended period of industrial activities, organochlorine pollutants, even those emitted in trace concentrations have reached detectable levels. For future research and for the assessment of environmental changes, present levels of contamination would be of high importance. This work publishes data of the contamination with organochlorine pollutants of this natural region, where biodiversity and ecological functions are of the highest order. Materials and Methods: Semipermeable membrane devices (SPMDs) were utilised as the sampling system. SPMDs were deployed in two small creeks and one water reservoir selected in the central part of the Krivoklatsko Natural Reserve, where it could be expected that any possible contamination by POPs would be lowest. The exposed SPMDs were analysed both for chemical contents of POPs and for toxicity properties. The chemical analyses of dibenzo-dioxins, dibenzo-furans, PCBs and OCPs were analysed by GC/MS/MS on GCQ or PolarisQ (Thermoquest). Toxicity bioassays were performed on the alga Desmodesmus subspicatus, bacteria Vibrio fischeri and crustacean Daphnia magna. All toxicity data were expressed as the effective volume Vtox. Vtox is a toxicity parameter, the determination of which is independent of SPMD deployment time and pre-treatment dilution (unlike, for example, the EC50 of the SPMD extract). Results: The following chemical parameters were monitored: 1) tetra, penta, hexa and hepta dibenzo-p-dioxins and furans; 2) all those detectable from tri- through deca-polychloriated biphenyls (PCBs) and 3) a group of organochlorine pesticides: hexachlorobenzene and isomers of hexachlorocyclohexane, DDE, DDD and DDT. The concentrations of dioxins and furans on the assessed sites varied from under detection levels up to 7 pg.l-1; PCBs were detected in a sum concentration up to 2.8 ng.l-1; and organochlorine pesticides up to 346 pg.l-1. The responses of bioassays used were very low, with the values obtained for Vtox being under 0.03 l/d. Discussion: Toxicity testing showed no toxicity responses, demonstrating that the system used is in coherence with the ecological status of the assessed sites. Values of Vtox were under the critical value – showing no toxicity. The PCA of chemical analysis data and toxicity responses resulted in no correlations between these two groups of parameters. This demonstrated that the present level of contamination has had no direct adverse effects on the biota. Conclusions: The concentration values of six EPA-listed, toxic dioxins and sums of tetra-hepta dioxins; nine EPA toxic dibenzofurans and the sums of tetra-hepta bibenzofurans are presented together with all tri-deka PCBs and organochlorine pesticides (alfa-, beta-, gama-, delta-HCH, HCB, opDDE, ppDDE, opDDD, ppDDD, opDDT, ppDDT). These values represent possible current regional natural background values of these substances monitored within the Central European region, with no recorded adverse effects on the freshwater ecosystem (up until the present time). Recommendations and Perspectives: Assessment of dioxins, furans and other organochlorine compounds within natural reserves can be important for the monitoring of human-induced impacts on preserved areas. No systematic monitoring of these substances in areas not directly affected by industry has generally been realised. There is a paucity of data of the presence of any of these substances within natural regions. Further monitoring of contamination of both soil and biota by dioxins and furans in preserve regions is needed and can be used for future monitoring of man-made activities and/or accidents. Semipermeable membrane devices proved to be a very good sampling system for the monitoring of trace concentrations of ambient organochlorine compounds. Toxicity evaluation using the Vtox concept demonstrated that those localities assessed expressed no toxicity.  相似文献   

12.
Pharmaceutical concentration data for Indian surface waters are currently scarce. Sewage often enters Indian rivers without prior treatment, and so previously reported environmental concentrations from regions with routinely implemented sewage treatment cannot simply be used to predict concentrations in Indian surface water. Improved knowledge of pharmaceutical concentrations in Indian waters would enable determination of potential risks posed to aquatic wildlife and human health in this region. The concentrations of five common non-steroidal anti-inflammatory drugs (NSAIDs; diclofenac, ketoprofen, naproxen, ibuprofen, and acetylsalicylic acid) were determined in surface waters from 27 locations of the Kaveri, Vellar, and Tamiraparani Rivers in southern India. The samples were extracted by solid-phase extraction and analyzed by GC-MS. The measured concentrations of four of the five drugs in this reconnaissance were relatively similar to those reported elsewhere (ND–200 ng/l); however, acetylsalicylic acid, the most readily degradable of the investigated drugs, was found at all sites and at considerably higher concentrations (up to 660 ng/l) than reported in European surface waters. This is the first report on the occurrence of NSAIDs in Indian rivers. The finding of elevated concentrations of acetylsalicylic acid is most likely a result of direct discharges of untreated sewage. Therefore, readily degradable pharmaceuticals may present larger concern in regions without consistent sewage treatment. Based on measured environmental concentrations, the risks of direct toxicity to aquatic wildlife and of humans consuming the water are discussed.  相似文献   

13.
The toxicity of ammonia to Hyalella azteca at constant pH in artificial media was controlled by sodium and potassium, and not by calcium, magnesium, or anions. Small increases in the LC50 for total ammonia (from 0.15 to 0.5 mM) occurred as sodium was increased from 0.1 to 1 mM and above, but major increases in the LC50 (to over 10 mM total ammonia) required the addition of potassium. Potassium was, however, more effective at reducing ammonia toxicity at high (1 mM) sodium than at low (0.1 mM) sodium. Ammonia toxicity was independent of pH at low sodium and potassium concentrations, when ammonia toxicity appeared to be associated primarily with aqueous ammonium ion concentrations. At high sodium and potassium concentrations, the toxicity of ammonia was reduced to the point where un-ionized ammonia concentrations also affected toxicity, and the LC50 became pH dependent. A mathematical model was produced for predicting ammonia toxicity from sodium and potassium concentrations and pH.  相似文献   

14.
The emission-exposure and exposure-response (toxicity) relationships are different for different emission source categories of anthropogenic primary fine particulate matter (PM2.5). These variations have a potentially crucial importance in the integrated assessment, when determining cost-effective abatement strategies. We studied the importance of these variations by conducting a sensitivity analysis for an integrated assessment model. The model was developed to estimate the adverse health effects to the Finnish population attributable to primary PM2.5 emissions from the whole of Europe. The primary PM2.5 emissions in the whole of Europe and in more detail in Finland were evaluated using the inventory of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario model (FRES), respectively. The emission-exposure relationships for different primary PM2.5 emission source categories in Finland have been previously evaluated and these values incorporated as intake fractions into the integrated assessment model. The primary PM2.5 exposure-response functions and toxicity differences for the pollution originating from different source categories were estimated in an expert elicitation study performed by six European experts on air pollution health effects. The primary PM2.5 emissions from Finnish and other European sources were estimated for the population of Finland in 2000 to be responsible for 209 (mean, 95% confidence interval 6–739) and 357 (mean, 95% CI 8–1482) premature deaths, respectively. The inclusion of emission-exposure and toxicity variation into the model increased the predicted relative importance of traffic related primary PM2.5 emissions and correspondingly, decreased the predicted relative importance of other emission source categories. We conclude that the variations of emission-exposure relationship and toxicity between various source categories had significant impacts for the assessment on premature deaths caused by primary PM2.5.  相似文献   

15.
The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.  相似文献   

16.
A novel method for assaying and calculating the toxicity of water-insoluble pesticides to green algae has been put forward in this work. First, a solvent is selected for use in bioassays; there should be a detailed screening to identify a solvent with inherently low toxicity to the test organism. Second, the EC50 is determined for selected pesticides by measuring the toxicity of various concentrations of each of the selected pesticides in a fixed concentration of selected solvent. Third, concentrations of the selected solvent are varied and the EC50 of each pesticide tested is assayed at a fixed concentration. Fourth, several suitable groups of solvent concentrations are selected and the corresponding EC50 values of tested pesticides are considered to establish the linear regression equation. Letting the solvent concentration be zero, one calculates the corresponding EC50 value, which corresponds to the inherent toxicity of the tested pesticide.  相似文献   

17.
Thallium (Tl) is an extremely toxic but little studied metal. For Hyalella azteca exposed in Lake Ontario water, a 25% reduction in survival (the LC25) occurred at about 48 nmol litre(-1) after 4 weeks. Body concentrations of Tl, which were proportional to water concentrations, averaged 290 nmol g(-1) dry mass at the LC25. Growth was reduced at slightly lower concentrations. Concentrations affecting reproduction were variable at < 50% of the LC25. On a water-concentration basis Tl was more toxic than Ni, Cu or Zn, but less toxic than Cd or Hg to Hyalella; toxicity to Pb was similar. On a body-concentration basis, the toxicities of Tl, Cd, Hg and Pb were all similar. Unlike Cd, Tl toxicity and uptake was affected by K concentrations in the water, and not by Ca, Mg, Na or other ions. Toxicity was proportional to uptake, and body concentrations were better predictors of toxicity than water concentrations in media with varying K concentrations. Preliminary measurements of Tl and Cd uptake by Hyalella from Hamilton Harbour and Lake Ontario sediments suggested that total bioavailable metal concentrations were greater in deep-water sediments from Lake Ontario than in sediments from the harbour. The ratio of bioavailable metal to the toxic threshold was slightly higher for Cd than for Tl, but well below 1 for both metals.  相似文献   

18.
A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of gamma-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 degrees x5 degrees grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it can also be adapted to provide characteristic travel distances and overall environmental persistence, which can be compared with other long-range transport prediction methods.  相似文献   

19.
In this study, the indicative value of mosses as biomonitors of atmospheric nitrogen (N) depositions and air concentrations on the one hand and site-specific and regional factors which explain best the total N concentration in mosses on the other hand were investigated for the first time at a European scale using correlation analyses. The analyses included data from mosses collected from 2781 sites across Europe within the framework of the European moss survey 2005/6, which was coordinated by the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP Vegetation). Modelled atmospheric N deposition and air concentration data were calculated using the Unified EMEP Model of the European Monitoring and Evaluation Programme (EMEP) of the Convention on Long-range Transboundary Air Pollution (CLRTAP). The modelled deposition and concentration data encompass various N compounds. In order to assess the correlations between moss tissue total N concentrations and the chosen predictors, Spearman rank correlation analysis and Classification and Regression Trees (CART) were applied. The Spearman rank correlation analysis showed that the total N concentration in mosses and modelled N depositions and air concentrations are significantly correlated (0.53 ≤ rs ≤ 0.68, p < 0.001). Correlations with other predictors were lower than 0.55. The CART analysis indicated that the variation in the total N concentration in mosses was best explained by the variation in NH4+ concentrations in air, followed by NO2 concentrations in air, sampled moss species and total dry N deposition. The total N concentrations in mosses mirror land use-related atmospheric concentrations and depositions of N across Europe. In addition to already proven associations to measured N deposition on a local scale the study at hand gives a scientific prove on the association of N concentration in mosses and modelled deposition at the European scale.  相似文献   

20.
A total of 156 fish composite samples were collected from five areas of the Baltic Sea and from three lakes and analysed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polybrominated diphenyl ethers (PBDEs). The European Union's maximum permissible level for PCDD/Fs, 4 pg WHO-TEQ/g fresh weight (fw), was exceeded in salmon, river lamprey and Baltic herring. In other species from the Baltic Sea, the 90th percentile was 3.42 pg WHO(PCDD/F)-TEQ/g fw. In the lake fish, the concentrations of PCDD/Fs, PCBs and PCNs were only 29-46% of those in the same species caught from the Baltic Sea, whereas the concentrations of PBDEs in the lake fish were as high as in the Baltic Sea fish. Dioxin-like PCBs contributed to the total dioxin-like toxicity of PCBs and PCDD/Fs by 49+/-12% in all the analysed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号