首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present study, influence of talc on thermal, mechanical and rheological behavior of PLA is investigated and the structure?Cproperty correlation for the PLA/talc composites is established. Poly(lactic acid)/talc composites are prepared by melt mixing of PLA with talc in twin screw extruder followed by blown film processing. Various characterizations techniques are used to evaluate thermal, morphological, mechanical and rheological behavior of PLA/talc composites and its blown film. DSC analysis showed that degree of crystallinity of PLA/talc composites was higher than that of neat PLA because of nucleating ability of talc. Spherulite morphology of PLA/talc composites showed that talc has increased nucleation density of spherulite having smaller radius than that of neat PLA. Talc is effective in enhancing tensile modulus and storage modulus of PLA due to reinforcing ability of talc particles.  相似文献   

2.
Nucleation of polylactide and polypropylene using novel renewable resource biobased carbon nanospheres (CNS) is investigated using differential scanning calorimetry and polarized optical microscopy. Isothermal studies near the optimal crystallization temperature demonstrate at least a five-fold increase in crystallization rate in PP but only a 1.4 times faster crystallization in PLA. Non-isothermal studies reveal an asymptotic relationship of the maximum crystallization temperature with increasing CNS weight loading in PP and no relationship in PLA. Microscopy indicates some aggregation in the solution blended samples and that average spherulite size is reduced 10-fold due to faster nucleation in the composites as compared to the neat polymer. The fractional crystallinity achieved during non-isothermal crystallization increases by about 7% with addition of a small amount of CNS and decreases with weight loading higher than 1%. The crystallization rates obtained in polypropylene are competitive with widely used mineral talc nucleating agents.  相似文献   

3.
Poly(lactic acid) (PLA) has gained considerable attention nowadays as a biocompatible polymer owing to its advantage of being prepared from renewable resources. PLA exhibits excellent tensile strength, fabricability, thermal plasticity and biocompatibility properties comparable to many petroleum based plastics. However, low heat distortion temperature, brittleness and slow crystallization rate limit the practical applications of PLA. In order to address these limitations, an attempt has been made in the current work to prepare binary blends of PLA with ethylene vinyl acetate (EVA) at different compositions via melt mixing technique. Systematic investigation on the mechanical properties, thermal degradation and crystallization behavior for PLA-EVA blends was carried out. The impact strength of binary blends of PLA–EVA was found to increase significantly by 176% for 15 wt% of EVA compared to virgin PLA. This is due to the strong interfacial adhesion among PLA and EVA resulting in brittle to ductile transition. Scanning electron microscopy analysis for impact fractured surfaces of binary blends of PLA implied the toughening effect of PLA by EVA. Thermogravimetry analysis results revealed that the activation energy of PLA–EVA blends decreased with increase in EVA content in the PLA matrix. While, differential scanning calorimetry results obtained for PLA–EVA blends revealed the improvement in crystallinity when compared with neat PLA. The effect of EVA on non-isothermal melt crystallization kinetics of PLA was also examined via DSC at various heating rates. Decreasing trend in the t1/2 values indicated the faster rate of crystallization mechanism after addition of EVA in the PLA matrix.  相似文献   

4.
Renewable resource-based composites were prepared with acorn powder and Thermoplastic resin poly(lactic acid) (PLA) by twin-screw extrusion followed by injection molding processing or hot-compression molding processing. The study of the composites microstructure showed poor adhesion between acorn powder and PLA matrix. The hygroscopicity, mechanical properties and melt flow property of composites were promising even though the composites had a 70 wt% content of acorn powder. Silane coupling agent, 4,4′-Methylenebis (phenyl isocyanate) and PLA grafted with maleic anhydride did not show obvious effect on mechanical properties of composites. The impact resistance strength of reinforced composites with steel fiber webs were improved greatly in comparison with those having no steel fiber webs. Thermal properties results of DSC and DMA showed that the presence of acorn powder significantly affected the crystallinity, crystallization temperature (Tc), glass transition temperature (Tg) and melting temperature (Tm) of PLA matrix. The study results proved that composites had superior mechanical properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

5.
Poly(lactic acid) (PLA) presents high strength and modulus, but very low toughness as well as slow crystallization. Natural rubber (NR) was blended to enhance the toughness and nucleating agent was added to improve the crystallization. Cyclodextrin (CD), considered as a green compound, as well as calcium carbonate (CaCO3) and talc were used as nucleating agents. Effects of these nucleating agents on crystallization, mechanical properties and morphology of neat PLA and PLA/NR blend were investigated. It was found that the addition of talc and CD decreased cold crystallization temperature (Tcc) of the PLA. Same result was obtained in PLA/NR blend containing talc. All nucleating agents increased the degree of crystallinity (ΧC) of PLA, whereas only talc and CaCO3 increased ΧC of PLA in PLA/NR blends. The enhanced toughness of PLA by the addition of nucleating agent was attributed to its increased crystallinity, as well as decreased spherulite size. For PLA/NR blends, the increase in toughness was mainly contributed by the presence of the rubber.  相似文献   

6.
This study is focused on the preparation, characterization, and determination of thermal properties and thermal reliability of paraffin/polypropylene (PP) composite as a novel form-stable phase change material (PCM) for thermal energy storage applications. In the composite, paraffin acts as a PCM when PP is operated as supporting material. The composites prepared at different mass fractions of paraffin (50, 60, 70, 80, and 90 w/w%) by solution casting method were subjected to leakage test by heating the composites over the melting temperature of the PCM. The paraffin/PP composite (70/30 w/w%) is found as the maximum paraffin containing composite and was characterized using Fourier transform infrared spectroscopy, optic microscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) techniques. DSC analysis indicated that the form-stable paraffin/PP composite melts at 44.77–45.52 °C and crystallizes at 53.55–54.80 °C. It has latent heats of 136.16 and −136.59 J/g for melting and crystallization, respectively. These thermal properties make it potential PCM for latent heat thermal energy storage (LHTES) purposes such as solar space heating applications. Accelerated thermal cycling tests indicated that the form-stable PCM had good thermal reliability. TGA also showed that the form-stable PCM degrades in two distinguishable steps and had good chemical stability.  相似文献   

7.
Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. In this paper jute fiber filled PLA resin (jute/PLA) composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet fabricated by pultrusion technique was adopted to prepare jute/PLA pellet. Because it is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of PLA melting temperature i.e. impregnation temperature and the kinds of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. Additionally, thermal and mechanical properties were investigated. It is found that 250° is much suitable for jute/PLA long fiber pultrusion process because of its less heat degradation of jute, better impregnation, acceptable mechanical property and higher production efficiency. Additionally the jute fibers seem much effective to increase deflection temperature under load, tensile modulus and Izod strength.  相似文献   

8.
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2. PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.  相似文献   

9.
The present investigation dealt with the flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends using a capillary rheometer. For this purpose, PLA/PS blends with different ratios of the concentrations were prepared using a single screw extruder. The shear viscosity, shear stress, shear rate, power-law index, viscous activation energy at a constant shear stress, and elongational stress were determined. PLA/PS blends exhibited a typical shear-thinning behavior over the entire range of shear rates tested, and the viscosity values of the blends would tend to decrease with increasing amount of PLA. In addition, the polymer blend of 70 % PLA and 30 % PS was found to be relatively less sensitive to the processing temperature, implying that the extrusion process was more desirable for fabrication of PLA/PS polymer blend than the injection process.  相似文献   

10.
In this study, the influence of alkali (NaOH) treatment on the mechanical, thermal and morphological properties of eco-composites of short flax fiber/poly(lactic acid) (PLA) was investigated. SEM analysis conducted on alkali treated flax fibers showed that the packed structure of the fibrils was deformed by the removal non-cellulosic materials. The fibrils were separated from each other and the surface roughness of the alkali treated flax fibers was improved. The mechanical tests indicated that the modulus of the untreated fiber/PLA composites was higher than that of PLA; on the other hand the modulus of alkali treated flax fiber/PLA was lower than PLA. Thermal properties of the PLA in the treated flax fiber composites were also affected. Tg values of treated flax fiber composites were lowered by nearly 10 °C for 10% NaOH treatment and 15 °C for 30% NaOH treatment. A bimodal melting behavior was observed for treated fiber composites different than both of neat PLA and untreated fiber composites. Furthermore, wide angle X-ray diffraction analysis showed that the crystalline structure of cellulose of flax fibers changed from cellulose-I structure to cellulose-II.  相似文献   

11.
Composite nucleating agent (CNA) consisting of zinc oxide as a crystallization promoter and phenylphosphonic acid zinc salt (PPZn) as an heterogeneous nucleation agent was employed to improve the crystallization behaviors of branched poly (lactic acid) (B-PLA) which was prepared by use of multi-functional epoxy-based chain extender (CE). The differential scanning calorimeter results showed that the crystallinity and crystallization temperature of prepared B-PLA/CNA were higher than that of linear poly (lactic acid) (L-PLA) and B-PLA at a high cooling rate. The corresponding phenomena of heterogeneous nucleation of B-PLA/CNA were observed by means of polarized optical microscope. The crystalline mechanism research results show that the degradation reaction and chain extending reaction were occurred simultaneously after the addition of CE and CNA into the PLA, PPZn as an effective nucleation points could increase the nucleation density and the degraded short molecular chains with higher chain mobility would improve crystal growth during the crystallization of the branched PLA. Non-isothermal cold crystallization kinetics of various B-PLA with different content of CNA was studied. The corresponding result showed that the crystallinity and crystallization rate increased obviously with the CNA content greater than or equal to 5phr, as well as the crystallization time decreased. The similar experimental results of non-isothermal and isothermal melt crystallization kinetics also showed that CNA had a significant impact on crystallization behavior of B-PLA.  相似文献   

12.
The objective of the study was to investigate the suitability of using sorghum bran in recycled low density polyethylene (R-LDPE) composites manufacturing. In response to the disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low density polyethylene and sorghum bran of different loadings (5, 10, 15 and 20 wt%) were prepared by melt compounding and compression molding. The effects of sorghum bran loadings on the mechanical, thermal, water absorption, swelling and crystalline properties of the composites were determined. Characterization of composites was carried out using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermo gravimetric (TGA/DTG) and mechanical analyses. It was found that increasing fiber loadings resulted to increased moduli and tensile strength while hardness was decreased. XRD indicated that fiber addition to R-LDPE did not change characteristic peak position. DSC results showed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, showing higher crystallization rates for R-LDPE. The results obtained confirmed that sorghum bran particles showed some potential as a good reinforcement in polymer matrix composites and indicate its thermal stability for possibly future composite applications.  相似文献   

13.
Fully-biodegradable and highly-filled thermoplastic starch plasticized with glycerol (GTPS)/poly (butylene succinate) (PBS) blends were prepared by Haake Mixer. Processing properties, thermal behaviors including melting and crystallization behavior, crystal structure, and compatibility of the blends were investigated using differential scanning calorimeter (DSC), wide angle X-ray diffractometer (WAXD), scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). The maximum and equilibrium torques decreased with the rising of glycerol contents and the dropping of PBS contents. GTPS30/PBS blends exhibited double melting endothermic peaks in the DSC thermograms, which related to the crystallization behavior and compatibility of the blends, but no double peaks for GTPS40/PBS. The addition of starch and glycerol could lead to higher crystallinity and lower crystallization rate of PBS, but would not change the crystal types and crystallite sizes of PBS according to DSC and WAXD analysis. SEM and DMA results gave the evidence to confirm the better compatibility of GTPS40/PBS. Besides, higher storage modulus in glassy state of GTPS/PBS blends than PBS could be seen from DMA analysis, which was the contrary in rubbery state.  相似文献   

14.
In this study, blends of poly (lactic acid) (PLA) with poly(ethylene/butylene succinate) (Bionolle) have been investigated for their thermal and mechanical properties as a function of the concentration of Bionolle. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tensile tests were used to characterize the blends. From the results of the DMA and DSC, it was found that this blend system was not miscible within the compositions studied. DSC results showed that adding Bionolle aids in crystallization of PLA. It was observed that increasing the Bionolle concentration led to a slight increase in the strain-at-break of the blends but a decrease in the Young’s modulus and ultimate tensile strength. Biaxially oriented films showed an increase in tensile strength, modulus, and strain-at-break.  相似文献   

15.
This paper investigated the influence of TiO2 nanoparticles on the morphologies, as well as crystallization behaviour and kinetics, of neat PLA and PCL, and of these polymers in different PLA/PCL blends. We used transmission electron microscopy to evaluate the morphologies of the systems, while the crystallization behaviour and kinetics were investigated through differential scanning calorimetry (DSC). In addition to standard and modulated (StepScan) DSC analyses, the self-nucleation temperatures of neat PCL and PCL in the different nanocomposites were determined, followed by a self-nucleation and annealing thermal fractionation analysis of PCL crystallization and an Avrami isothermal kinetic analysis of PCL crystallization and PLA cold crystallization. We found that the nanoparticles were well dispersed, but only in the PLA phase of the blends, with only a few on the interface or in the PCL phase. They did nucleate and accelerate, and influence the mechanism of, the PCL crystallization in neat PCL, but had little influence on PCL crystallization in the blends. They strongly influenced the rate of cold crystallization of PLA, but had little influence on this parameter in the blends. The tensile properties were also determined, and changes in these properties could be related to the morphologies of the systems.  相似文献   

16.
Eco-friendly completely biodegradable biocomposites have been fabricated using polylactic acid (PLA) and banana fiber (BF) employing melt blending technique followed by compression moulding. BF??s were surface treated by NaOH and various silanes viz. 3-aminopropyltriethoxysilane and bis-(3-triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Characterization studies have been suggested that a better fiber matrix interaction because of the newly added functionalities on the BF surface as a result of chemical treatments. In comparison with the untreated BF biocomposite, an increase of 136% in tensile strength and 57% in impact strength has been observed for Si69 treated BF biocomposite. DSC thermograms of surface treated BF biocomposites revealed an increase in glass transition and melting transition due to the more restricted macromolecular movement as a result of better matrix fiber interaction. The thermal stability in the biocomposites also increased in case of biocomposite made up of BF treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values for the same biocomposite. Biodegradation studies of the biocomposites have been investigated in Burkholderia cepacia medium through morphological and weight loss studies.  相似文献   

17.
The rheologies, morphologies, crystallization behaviors, mechanical and thermal properties of poly(lactic acid) (PLA)/polypropylene (PP) blends and PLA/PP/maleic anhydride-grafted PP (MAPP) blends were investigated. The results showed that the complex viscosities of PLA/PP blends were between those of neat PLA and neat PP, and MAPP had a thinning effect on those of the blends. PLA/PP blends exhibited the distinct phase separation morphologies due to the limited partial miscibility of the blend components. MAPP slightly improved the miscibility between PLA and PP. Both the cold crystallization of PLA component and melt crystallization of PP component were enhanced, probably because PLA and PP were reciprocal nucleating agents. The tensile strength and flexural modulus decreased, while the tensile strain at break and heat deflection temperature (HDT) increased with the increasing PP content. MAPP had the positive effects on the notched impact strength and HDT of PLA-rich blends and also increased the flexural modulus of the binary blends. The thermal stability of the blend was improved by PP, and the incorporation of MAPP further enhanced the thermal stability.  相似文献   

18.
The shape memory behavior of PLLA (poly(l-lactide)) and chitosan/PLLA composites was studied. PLLA and chitosan were compounded to fabricate novel materials which may have biodegradability and biocompatibility. Chitosan does not significantly affect the glass and melting transition temperature of the PLLA. Both the pure PLLA and chitosan/PLLA composites showed shape memory effect arising from the viscoelastic properties of PLLA comprised of semi crystalline structures. The shape recovery ratio of the chitosan/PLLA composites decreased significantly with increasing chitosan contents due to the incompatibility between PLLA and chitosan. Phase separation structures of the composites were observed by using atomic force microscopy. To obtain good shape memory effect, the chitosan content should be below 15 wt%.  相似文献   

19.
Polylactic acid (PLA)/starch fibers were produced by twin screw extrusion of PLA with granular or gelatinized starch/glycerol followed by drawing through a set of winders with an intermediate oven. At 30% starch, fibers drawn 2–5x were highly flexible (elongation 20–100%) while undrawn filaments were brittle (elongation 2–9%). Tensile strength and moduli increased with increasing draw ratio but decreased with increasing starch content. Mechanical properties were better for composites made with gelatinized starch/glycerol than granular starch. In conclusion, orientation greatly increases the flexibility of PLA/starch composites and this may be useful not only in fibers but also possibly in molded articles. Other advantages of starch addition could include fiber softness without added plasticizer, moisture/odor absorbency and as a carrier for active compounds.  相似文献   

20.
分别采用石灰乳化学沉淀法和低温结晶法去除烟气脱硫溶液中的SO42-。实验结果表明:在室温、CaO溶液质量分数25%的条件下,石灰乳化学沉淀法对SO42-的去除率仅为59.51%,且向溶液中引入了Ca2+,产生的硫酸钙固体废物难以再生利用;采用低温结晶法处理烟气脱硫溶液,在结晶温度7 ℃、结晶时间3 h、NaOH加入量34.8 g/L的条件下,SO42-的去除率为82.04%、滤液中的ρ(Na+)为3.88 g/L。在现场工业应用试验中,采用低温结晶法去除烟气脱硫溶液中的SO42-,平均SO42-的去除率可达70.00%以上,滤液中的ρ(Na+)小于15.00 g/L。该法可有效抑制烟气脱硫溶液中SO42-含量的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号